• Title/Summary/Keyword: Varying coefficient

Search Result 585, Processing Time 0.022 seconds

A Study on the Flow Control around a Circular Cylinder by Control rods (제어봉을 부착한 원형실린더 주위 유동제어에 관한 연구)

  • Gim, Ok-Sok;Lee, Gyoung-Woo;Cho, Dae-Hwan
    • Proceedings of KOSOMES biannual meeting
    • /
    • 2007.05a
    • /
    • pp.169-174
    • /
    • 2007
  • The purpose in having a control rod an a buoy system is to control the motion of it. The system may be composed entirely af a single circular cylinder finder and a lang mooring anchor cable. A control rod has one function to perform in meeting its purpose, and that is to develop a control force in consequence of its orientation and movement relative to the water. The forces and moments generated as a result of the effects of mutual interference, then determine the stability characteristics of the body. In this paper, the study of control-rod-attached buoy's 2-dimensional section was accomplished. model tests and numerical simulations had been carried out with different diameters of control rods. and varying the Reynolds number $Re=5,000{\sim}25,000$ based an the cylinder diameter(D=50mm) to. predict the performance af the body and the 2 frame particle tracking method had been used to obtain the velocity distribution in the flaw field 50mm circular cylinder had been used during the whale experiments and measured results had been compared with each other.

  • PDF

Bond strength prediction of steel bars in low strength concrete by using ANN

  • Ahmad, Sohaib;Pilakoutas, Kypros;Rafi, Muhammad M.;Zaman, Qaiser U.
    • Computers and Concrete
    • /
    • v.22 no.2
    • /
    • pp.249-259
    • /
    • 2018
  • This paper presents Artificial Neural Network (ANN) models for evaluating bond strength of deformed, plain and cold formed bars in low strength concrete. The ANN models were implemented using the experimental database developed by conducting experiments in three different universities on total of 138 pullout and 108 splitting specimens under monotonic loading. The key parameters examined in the experiments are low strength concrete, bar development length, concrete cover, rebar type (deformed, cold-formed, plain) and diameter. These deficient parameters are typically found in non-engineered reinforced concrete structures of developing countries. To develop ANN bond model for each bar type, four inputs (the low strength concrete, development length, concrete cover and bar diameter) are used for training the neurons in the network. Multi-Layer-Perceptron was trained according to a back-propagation algorithm. The ANN bond model for deformed bar consists of a single hidden layer and the 9 neurons. For Tor bar and plain bars the ANN models consist of 5 and 6 neurons and a single hidden layer, respectively. The developed ANN models are capable of predicting bond strength for both pull and splitting bond failure modes. The developed ANN models have higher coefficient of determination in training, validation and testing with good prediction and generalization capacity. The comparison of experimental bond strength values with the outcomes of ANN models showed good agreement. Moreover, the ANN model predictions by varying different parameters are also presented for all bar types.

A-priori Comparative Assessment of the Performance of Adjustment Models for Estimation of the Surface Parameters against Modeling Factors (표면 파라미터 계산시 모델링 인자에 따른 조정계산 추정 성능의 사전 비교분석)

  • Seo, Su-Young
    • Spatial Information Research
    • /
    • v.19 no.2
    • /
    • pp.29-36
    • /
    • 2011
  • This study performed quantitative assessment of the performance of adjustment models by a-priori analysis of the statistics of the surface parameter estimates against modeling factors. Lidar, airborne imagery, and SAR imagery have been used to acquire the earth surface elevation, where the shape properties of the surface need to be determined through neighboring observations around target location. In this study, parameters which are selected to be estimated are elevation, slope, second order coefficient. In this study, several factors which are needed to be specified to compose adjustment models are classified into three types: mathematical functions, kernel sizes, and weighting types. Accordingly, a-priori standard deviations of the parameters are computed for varying adjustment models. Then their corresponding confidence regions for both the standard deviation of the estimate and the estimate itself are calculated in association with probability distributions. Thereafter, the resulting confidence regions are compared to each other against the factors constituting the adjustment models and the quantitative performance of adjustment models are ascertained.

Assessment of the Counter-Flow Thrust Vector Control in a Three-Dimensional Rectangular Nozzle (3차원 직사각형 노즐에서 역유동 추력벡터 제어 평가)

  • Wu, Kexin;Kim, Tae Ho;Kochupulickal, James Jintu;Kim, Heuy Dong
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.24 no.1
    • /
    • pp.34-46
    • /
    • 2020
  • Computational assessment of gas-dynamic characteristics is explored for a three-dimensional counter-flow thrust vector control system in a rectangular supersonic nozzle. This convergent-divergent nozzle is designed by Method of Characteristics and its design Mach number is specially set as 2.5. Performance variations of the counter-flow vector system are illustrated by varying the gap height of the secondary flow duct. Key parameters are quantitatively analyzed, such as static pressure distribution along the centerline of the upper suction collar, deflection angle, secondary mass flow ratio, and resultant thrust coefficient. Additionally, the streamline on the symmetry plane, three-dimensional iso-Mach number surface contour, and three-dimensional turbulent kinetic energy contour are presented to reveal overall flow-field characteristics in detail.

Measurement and Analysis of Temperature Dependence for Current-Voltage Characteristics of Homogeneous Emitter and Selective Emitter Crystalline Silicon Solar Cells (Homogeneous 에미터와 Selective 에미터 결정질 실리콘 태양전지의 온도에 따른 전류-전압 특성 변화 측정 및 분석)

  • Nam, Yoon Chung;Park, Hyomin;Lee, Ji Eun;Kim, Soo Min;Kim, Young Do;Park, Sungeun;Kang, Yoonmook;Lee, Hae-Seok;Kim, Donghwan
    • Korean Journal of Materials Research
    • /
    • v.24 no.7
    • /
    • pp.375-380
    • /
    • 2014
  • Solar cells exhibit different power outputs in different climates. In this study, the temperature dependence of open-circuit voltage(V-oc), short-circuit current(I-sc), fill factor(FF) and the efficiency of screen-printed single-crystal silicon solar cells were studied. One group was fabricated with homogeneously-doped emitters and another group was fabricated with selectively-doped emitters. While varying the temperature (25, 40, 60 and $80^{\circ}C$), the current-voltage characteristics of the cells were measured and the leakage currents extracted from the current-voltage curve. As the temperature increased, both the homogeneously-doped and selectively-doped emitters showed a slight increase in I-sc and a rapid degradation of V-oc. The FF and efficiency also decreased as temperature increased in both groups. The temperature coefficient for each factor was calculated. From the current-voltage curve, we found that the main cause of V-oc degradation was an increase in the intrinsic carrier concentration. The temperature coefficients of the two groups were compared, leading to the idea that structural effects could also affect the temperature dependence of current-voltage characteristics.

Mating Systems and Inbreeding Pressure in Populations of Wild Lentil Tare, Vicia tetrasperm (Leguminosae) (얼치기완두(콩과) 집단의 교배계와 내교잡 압력)

  • Huh, Man-Kyu
    • Journal of Life Science
    • /
    • v.17 no.11
    • /
    • pp.1477-1481
    • /
    • 2007
  • The mating systems of natural populations of Vicia tetrasperm in Korea were determined using allozyme analysis. The result suggests that V. tetrasperm is low rates of outcrossing or mix-mating outcrossing (self-fertilization, s < 0.5). At the population levels, the values of inbreeding coefficient of ten populations in Korea varied from 0.131 to 0.176, giving an average 0.154. For ten natural populations, multi-locus estimates of outcrossing (tm) was 0.333 across fifteen polymorphic loci, with individual population values ranging from 0.269 to 0.423. The differences between the tm and ts values were not close to zero (tm - ts > 0.154), indicating that biparental inbreeding was significant in the loci. The reason for relatively low outcrossing rates of some populations could be attributed to extensive consanguineous mating and isolation of flowering mature plants. Although heterozygote excess was observed in one natural population, most populations exhibited varying degrees of inbreeding and heterozygotes deficit. Thus, selection against homozygotes operated in the progeny populations throughout the life cycle.

ON ANALYTICAL SOLUTION OF NON LINEAR ROLL EQUATION OF SHIPS

  • Tata S. Rao;Shoji Kuniaki;Mita Shigeo;Minami Kiyokazu
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 2006.10a
    • /
    • pp.134-143
    • /
    • 2006
  • Out of all types of motions the critical motions leading to capsize is roll. The dynamic amplification in case of roll motion may be large for ships as roll natural frequency generally falls within the frequency range of wave energy spectrum typical used for estimation of motion spectrum. Roll motion is highly non-linear in nature. Den are various representations of non-linear damping and restoring available in literature. In this paper an uncoupled non-linear roll equations with three representation of damping and cubic restoring term is solved using a perturbation technique. Damping moment representations are linear plus quadratic velocity damping, angle dependant damping and linear plus cubic velocity dependant damping. Numerical value of linear damping coefficient is almost same for all types but non-linear damping is different. Linear and non-linear damping coefficients are obtained form free roll decay tests. External rolling moment is assumed as deterministic with sinusoidal form. Maximum roll amplitude of non-linear roll equation with various representations of damping is calculated using analytical procedure and compared with experimental results, which are obtained form forced tests in regular waves by varying frequency with three wave heights. Experiments indicate influence of non-linearity at resonance frequency. Both experiment and analytical results indicates increase in maximum roll amplitude with wave slope at resonance. Analytical results are compared with experiment results which indicate maximum roll amplitude analytically obtained with angle dependent and cubic velocity damping are equal and difference from experiments with these damping are less compared to non-linear equation with quadratic velocity damping.

  • PDF

Characteristics of Shear Behavior for Sand-Clay Composite by Triaxial Test (삼축압축시험에 의한 모래-점토 복합시료의 전단거동 특성)

  • Lee, Jin-Soo;Kim, Jae-Il;Lee, Kang-Il
    • Journal of the Korean Geosynthetics Society
    • /
    • v.5 no.4
    • /
    • pp.19-25
    • /
    • 2006
  • To examine the general features of a sand-clay composite triaxial test by making specimen varying ratios of diameters (dw) of sand columns that are installed on the soft ground as drains to diameters (de) of drain zone so called drainage space ratio (n=de/dw), densities of the granular columns, and strength of soft soils round around. I also conducted a test to research the reinforcement ability and effects of the ground when the granular columns are wrapped with supplementary materials such as geotextile. The results of the triaxial compression test showed that the shear strength increase is much big when the granular columns are wrapped with supplementary materials, while the shear strength increases as the diameter and density of the granular column increase in general. Also the drainage space ratio shows a distinct increase just below 3 and a similar shear behavior to sand is appeared. The pore water pressure coefficient decreases as the drainage space ratio decreases, however, when the drainage space ratio is less than 3~4, it declines significantly as shown in the results of shear behavior.

  • PDF

Synthesis and Characterization of a Near-Infrared Optical Materials for Shielding Infrared Rays

  • Park Su-Yeol;Sin Seung-Rim;Sin Jong-Il;O Se-Hwa;Jeon Geun
    • Proceedings of the Korean Society of Dyers and Finishers Conference
    • /
    • 2005.05a
    • /
    • pp.213-215
    • /
    • 2005
  • The metal complexes can be influenced not only by the central metal atoms and the substituent groups, but also by the native of the chelating atoms. For example, near-infrared absorbing chromophores were synthesized by the reaction of phenylenediamine derivatives with a solution of pottassium hydroxide followed by the addition of nickel(II) chloride. These dyes provide absorbing infrared light over 780-840 nm with an extinction coefficient of $2.5-6.0{\times}10^4$. By introduction of alkyl, alkoxyl, cyano, and other functional group into the parent dye, these dyes greatly improved the solubility in organic solvent. New near-infrared absorbing donor-acceptor chromophores have been investigated by varying the electron donating and accepting strength of the two halves of the molecule. The cyanine chromophores permit the simplest way of obtaining systems that absorb well into the near-infrared region of the spectrum. Cyanine dyes possess high extinction coefficients that initially increase with Increasing chain length. These chromophores could be useful in near-infrared optical materials.

  • PDF

Hydraulic Evaluation and Performance of On-Site Sanitation Systems in Central Thailand

  • Koottatep, Thammarat;Eamrat, Rawintra;Pussayanavin, Tatchai;Polprasert, Chongrak
    • Environmental Engineering Research
    • /
    • v.19 no.3
    • /
    • pp.269-274
    • /
    • 2014
  • On-site sanitation systems are typically installed to treat grey and toilet wastewaters in areas without sewer and centralized treatment systems. It is well known that, due to inappropriate design and operation, treatment performance of these systems in developing countries is not satisfactory in the removal of pathogens and organic matters. This research aimed to investigate the hydraulic conditions occurring in some on-site sanitation systems and the effects of hydraulic retention times (HRTs) on the system performance. The experiments were conducted with a laboratory-scale septic tank (40L in size) and an actual septic tank (600L in size), to test the hydraulic conditions by using tracer study with HRTs varying at 12, 24 and 48 hr. The experimental results showed the dispersion numbers to be in the range of 0.017-0.320 and the short-circuit ratios in the range of 0.014-0.031, indicating the reactors having a high level of sort-circuiting and approaching complete-mix conditions. The removal efficiency of $BOD_5$ was found to be 67% and the $k_{30}$ values for $BOD_5$ was $2.04day^{-1}$. A modified complete-mix model based on the relationship between $BOD_5$ removal efficiencies and HRTs was developed and validated with actual-scale septic tank data having a correlation coefficient ($R^2$) of 0.90. Therefore, to better protect our environment and minimizing health risks, new generation toilets should be developed that could minimize short-circuiting and improving treatment performance.