• Title/Summary/Keyword: Variance of Analysis

Search Result 6,248, Processing Time 0.048 seconds

Selection of Signal-to-Noise Ratios through Simple Data Analysis (망목특성에서의 자료분석을 통한 SN비의 선택)

  • Lim, Yong Bin
    • Journal of Korean Society for Quality Management
    • /
    • v.22 no.4
    • /
    • pp.1-12
    • /
    • 1994
  • For quality improvement, Taguchi emphasizes the reduction of variation of the quality characteristic. Taguchi has used the signal to noise ratios for achieving minimum dispersion of the quality characteristic with its location adjusted to some desired target value. At each setting of design factors, the variance of the quality characteristic could be affected by the mean. In most cases, as the mean get larger, the variance tends to increase, The Taguchi's SN ratio corresponds to the case that the variance is proportional to the square of the mean. But the variance can increase faster or slower than the square of the mean. We propose to infer a linking relationship of the variance and mean through simple data analysis technique, and then use a reasonable SN ratio.

  • PDF

Complex Segregation Analysis of Total Milk Yield in Churra Dairy Ewes

  • Ilahi, Houcine;Othmane, M. Houcine
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.24 no.3
    • /
    • pp.330-335
    • /
    • 2011
  • The mode of inheritance of total milk yield and its genetic parameters were investigated in Churra dairy sheep through segregation analyses using a Monte Carlo Markov Chains (MCMC) method. Data which consisted of 7,126 lactations belonging to 5,154 ewes were collected between 1999 and 2002 from 15 Spanish Churra dairy flocks. A postulated major gene was assumed to be additive and priors used for variance components were uniform. Based on 50 000 Gibbs samples from ten replicates chains of 100,000 cycles, the estimated marginal posterior means${\pm}$posterior standard deviations of variance components of milk yield were $23.17{\pm}18.42$, $65.20{\pm}25.05$, $120.40{\pm}42.12$ and $420.83{\pm}40.26$ for major gene variance ($\sigma_G^2$), polygenic variance ($\sigma_u^2$), permanent environmental variance ($\sigma_{pe}^2$) and error variance ($\sigma_e^2$), respectively. The results of this study showed the postulated major locus was not significant, and the 95% highest posterior density regions ($HPDs_{95%}$) of most major gene parameters included 0, and particularly for the major gene variance. The estimated transmission probabilities for the 95% highest posterior density regions ($HPDs_{95%}$) were overlapped. These results indicated that segregation of a major gene was unlikely and that the mode of inheritance of total milk yield in Churra dairy sheep is purely polygenic. Based on 50,000 Gibbs samples from ten replicates chains of 100,000 cycles, the estimated polygenic heritability and repeatability were $h^2=0.20{\pm}0.05$ and r=$0.34{\pm}0.06$, respectively.

Statistical Design of Experiments and Analysis: Hierarchical Variance Components and Wafer-Level Uniformity on Gate Poly-Silicon Critical Dimension (통계적 실험계획 및 분석: Gate Poly-Silicon의 Critical Dimension에 대한 계층적 분산 구성요소 및 웨이퍼 수준 균일성)

  • Park, Sung-min;Kim, Byeong-yun;Lee, Jeong-in
    • Journal of Korean Institute of Industrial Engineers
    • /
    • v.29 no.2
    • /
    • pp.179-189
    • /
    • 2003
  • Gate poly-silicon critical dimension is a prime characteristic of a metal-oxide-semiconductor field effect transistor. It is important to achieve the uniformity of gate poly-silicon critical dimension in order that a semiconductor device has acceptable electrical test characteristics as well as a semiconductor wafer fabrication process has a competitive net-die-per-wafer yield. However, on gate poly-silicon critical dimension, the complexity associated with a semiconductor wafer fabrication process entails hierarchical variance components according to run-to-run, wafer-to-wafer and even die-to-die production unit changes. Specifically, estimates of the hierarchical variance components are required not only for disclosing dominant sources of the variation but also for testing the wafer-level uniformity. In this paper, two experimental designs, a two-stage nested design and a randomized complete block design are considered in order to estimate the hierarchical variance components. Since gate poly-silicon critical dimensions are collected from fixed die positions within wafers, a factor representing die positions can be regarded as fixed in linear statistical models for the designs. In this context, the two-stage nested design also checks the wafer-level uniformity taking all sampled runs into account. In more detail, using variance estimates derived from randomized complete block designs, Duncan's multiple range test examines the wafer-level uniformity for each run. Consequently, a framework presented in this study could provide guidelines to practitioners on estimating the hierarchical variance components and testing the wafer-level uniformity in parallel for any characteristics concerned in semiconductor wafer fabrication processes. Statistical analysis is illustrated for an experimental dataset from a real pilot semiconductor wafer fabrication process.

Selection of Survival Models for Technological Development (기술발전에 따른 생존모형 선정)

  • Oh, H.S.;Kim, C.S.;Rhee, H.K.;Yim, D.S.;Cho, J.H.
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.32 no.4
    • /
    • pp.184-191
    • /
    • 2009
  • In a technological driven environment, a depreciation estimate which is based on traditional life analysis results in a decelerated rate of capital recovery. This time pattern of technological growths models needs to be incorporated into life analysis framework especially in those industries experiencing fast technological changes. The approximation technique for calculating the variance can be applied to the six growth models that were selected by the degree of skewness and the transformation of the functions. For the Pearl growth model, the Gompertz growth model, and the Weibull growth model, the errors have zero mean and a constant variance over time. However, transformed models like the linearized Fisher-Pry model, the linearized Gompertz growth model, and the linearized Weibull growth model have increasing variance from zero to that point at which inflection occurs. It can be recommended that if the variance of error over time is increasing, then a transformation of observed data is appropriate.

Condition assessment of bridge pier using constrained minimum variance unbiased estimator

  • Tamuly, Pranjal;Chakraborty, Arunasis;Das, Sandip
    • Structural Monitoring and Maintenance
    • /
    • v.7 no.4
    • /
    • pp.319-344
    • /
    • 2020
  • Inverse analysis of non-linear reinforced concrete bridge pier using recursive Gaussian filtering for in-situ condition assessment is the main theme of this work. For this purpose, minimum variance unbiased estimation using unscented sigma points is adopted here. The uniqueness of this inverse analysis lies in its approach for strain based updating of engineering demand parameters, where appropriate bound and constrained conditions are introduced to ensure numerical stability and convergence. In this analysis, seismic input is also identified, which is an added advantage for the structures having no dedicated sensors for earthquake measurement. First, the proposed strategy is tested with a simulated example whose hysteretic properties are obtained from the slow-cyclic test of a frame to investigate its efficiency and accuracy. Finally, the experimental test data of a full-scale bridge pier is used to study its in-situ condition in terms of Park & Ang damage index. Overall the study shows the ability of the augmented minimum variance unbiased estimation based recursive time-marching algorithm for non-linear system identification with the aim to estimate the engineering damage parameters that are the fundamental information necessary for any future decision making for retrofitting/rehabilitation.

The Effects of Personal, Institutional, Social Variables on Determination of The Cyber University Students' Dropout Intention (개인, 교육기관, 사회적 변인이 사이버대 재학생의 중도탈락의도 결정에 미치는 영향)

  • Kwon, Hye-Jin
    • The Journal of the Korea Contents Association
    • /
    • v.10 no.3
    • /
    • pp.404-412
    • /
    • 2010
  • The purpose of this study is to suggest the basic data for lowering cyber university students' dropout rate and fostering continuous learning environment through understanding that cyber university student's private variance, an education institute variance and social variance have the impact on a student's determining dropout. For this, we selected students in A cyber university and carried out surveys for 500 students from April first to May 31st, 2009 using convenience sampling. We excluded answers whose results are considered to be insufficient or overlapped among answers of 336 students and used 304 answers in this study. We carried out logistics regression analysis using SPSS for Winow 15.0 for data analysis. First, it proved that individual interest variance affects the dropout. Second, it turned out that educational institute's environment variance has impact on the dropout. Third, it proved that social environment factor affects the dropout. Fourth, only individual variance among individual, an educational institute and social variance has meaningful impact on the dropout in terms of statistics.

Analysis of inconsistent source sampling in monte carlo weight-window variance reduction methods

  • Griesheimer, David P.;Sandhu, Virinder S.
    • Nuclear Engineering and Technology
    • /
    • v.49 no.6
    • /
    • pp.1172-1180
    • /
    • 2017
  • The application of Monte Carlo (MC) to large-scale fixed-source problems has recently become possible with new hybrid methods that automate generation of parameters for variance reduction techniques. Two common variance reduction techniques, weight windows and source biasing, have been automated and popularized by the consistent adjoint-driven importance sampling (CADIS) method. This method uses the adjoint solution from an inexpensive deterministic calculation to define a consistent set of weight windows and source particles for a subsequent MC calculation. One of the motivations for source consistency is to avoid the splitting or rouletting of particles at birth, which requires computational resources. However, it is not always possible or desirable to implement such consistency, which results in inconsistent source biasing. This paper develops an original framework that mathematically expresses the coupling of the weight window and source biasing techniques, allowing the authors to explore the impact of inconsistent source sampling on the variance of MC results. A numerical experiment supports this new framework and suggests that certain classes of problems may be relatively insensitive to inconsistent source sampling schemes with moderate levels of splitting and rouletting.

Bayesian Analysis for the Error Variance in a Two-Way Mixed-Effects ANOVA Model Using Noninformative Priors (무정보 사전분포를 이용한 이원배치 혼합효과 분산분석모형에서 오차분산에 대한 베이지안 분석)

  • 장인홍;김병휘
    • The Korean Journal of Applied Statistics
    • /
    • v.15 no.2
    • /
    • pp.405-414
    • /
    • 2002
  • We consider the problem of estimating the error variance of in a two-way mixed-effects ANOVA model using noninformative priors. First, we derive Jeffreys' prior, a reference prior, and matching priors. We then provide marginal posterior distributions under those noninformative priors. Finally, we provide graphs of marginal posterior densities of the error variance and credible intervals for the error variance in two real data set and compare these credible intervals.

Optimum seat design for the quadruple offset butterfly valve by analysis of variance with orthogonal array

  • Lee, Sang-Beom;Lee, Dong-Myung
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.38 no.8
    • /
    • pp.961-967
    • /
    • 2014
  • In onshore and offshore plant engineering, a broad use of pipe system have been achieved and accordingly related technologies has been developed especially in the field of flow control valves. The aim of this study is to suggest the quadruple offset butterfly valve for bi-directional applications which show equivalent operating torque characteristics of the triple offset butterfly valve. Seat design parameters for the quadruple offset butterfly valve are determined by the proposed method utilizing both ANOVA (analysis of variance) and the orthogonal array. Through additive model considering the effect of design parameters on seating torque, mean estimation is performed and thus its optimization results are verified by design of experiment results. The insight obtained from the present study is beneficial for valve design engineers to develop reliable and integrated design of the quadruple offset butterfly valve.

Mapping Quantitative Trait Loci with Various Types of Progeny from Complex Pedigrees

  • Lee, C.;Wu, X.L.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.14 no.11
    • /
    • pp.1505-1510
    • /
    • 2001
  • A method for mapping quantitative trait loci (QTL) was introduced incorporating the information of mixed progeny from complex pedigrees. The method consisted of two steps based on single marker analysis. The first step was to examine the marker-trait association with a mixed model considering common environmental effect and reversed QTL-marker linkage phase. The second step was to estimate QTL effects by a weighted least square analysis. A simulation study indicated that the method incorporating mixed progeny from multiple generations improved the accuracy of QTL detection. The influence of within-genotype variance and recombination rate on QTL analysis was further examined. Detecting a QTL with a large within-genotype variance was more difficult than with a small within-genotype variance. Most of the significant marker-QTL association was detectable when the recombination rate was less than 15%.