• Title/Summary/Keyword: Variable parameters

Search Result 1,703, Processing Time 0.022 seconds

Bayesian Parameter Estimation for Prognosis of Crack Growth under Variable Amplitude Loading (변동진폭하중 하에서 균열성장예지를 위한 베이지안 모델변수 추정법)

  • Leem, Sang-Hyuck;An, Da-Wn;Choi, Joo-Ho
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.35 no.10
    • /
    • pp.1299-1306
    • /
    • 2011
  • In this study, crack-growth model parameters subjected to variable amplitude loading are estimated in the form of a probability distribution using the method of Bayesian parameter estimation. Huang's model is employed to describe the retardation and acceleration of the crack growth during the loadings. The Markov Chain Monte Carlo (MCMC) method is used to obtain samples of the parameters following the probability distribution. As the conventional MCMC method often fails to converge to the equilibrium distribution because of the increased complexity of the model under variable amplitude loading, an improved MCMC method is introduced to overcome this shortcoming, in which a marginal (PDF) is employed as a proposal density function. The model parameters are estimated on the basis of the data from several test specimens subjected to constant amplitude loading. The prediction is then made under variable amplitude loading for the same specimen, and validated by the ground-truth data using the estimated parameters.

STEADY NONLINEAR HYDROMAGNETIC FLOW OVER A STRETCHING SHEET WITH VARIABLE THICKNESS AND VARIABLE SURFACE TEMPERATURE

  • Anjali Devi, S.P.;Prakash, M.
    • Journal of the Korean Society for Industrial and Applied Mathematics
    • /
    • v.18 no.3
    • /
    • pp.245-256
    • /
    • 2014
  • This work is focused on the boundary layer and heat transfer characteristics of hydromagnetic flow over a stretching sheet with variable thickness. Steady, two dimensional, nonlinear, laminar flow of an incompressible, viscous and electrically conducting fluid over a stretching sheet with variable thickness and power law velocity in the presence of variable magnetic field and variable temperature is considered. Governing equations of the problem are converted into ordinary differential equations utilizing similarity transformations. The resulting non-linear differential equations are solved numerically by utilizing Nachtsheim-Swigert shooting iterative scheme for satisfaction of asymptotic boundary conditions along with fourth order Runge-Kutta integration method. Numerical computations are carried out for various values of the physical parameters and the effects over the velocity and temperature are analyzed. Numerical values of dimensionless skin friction coefficient and non-dimensional rate of heat transfer are also obtained.

Analysis and Design of DC-link Voltage Controller in Shunt Active Power Filter

  • Wang, Yu;Xie, Yun-Xiang;Liu, Xiang
    • Journal of Power Electronics
    • /
    • v.15 no.3
    • /
    • pp.763-774
    • /
    • 2015
  • This study investigates the inherent influence of a DC-link voltage controller on both DC-link voltage control and the compensation performance of a three-phase, four-wire shunt active power filter (APF). A nonlinear variable-parameter DC-link voltage controller is proposed to satisfy both the dynamic characteristic of DC-link voltage control and steady-state compensation performance. Unlike in the conventional fixed-parameter controller, the parameters in the proposed controller vary according to the difference between the actual and the reference DC-link voltages. The design procedures for the nonlinear voltage controller with variable parameters are determined and analyzed so that the proposed voltage controller can be designed accordingly. Representative simulation and experimental results for the three-phase, four-wire, center-spilt shunt APF verify the analysis findings, as well as the feasibility and effectiveness of the proposed DC-link voltage controller.

Digital current control for BLDC motor using variable structure controller and artificial neural network (가변구조제어기와 인공 신경회로망에 의한 BLDC모터의 디지털 전류제어)

  • 박영배;김대준;최영규
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1997.10a
    • /
    • pp.504-507
    • /
    • 1997
  • It is well known that Variable Structure Controller(VSC) is robust to parameters variation and disturbance but its performance depends on the design parameters such as switching gain and slope of sliding surface. This paper proposes a more robust VSC that is composed of local VSC's. Each local VSC considers the local system dynamics with narrow parameter variation and disturbance. First we optimize the local VSC's by use of Evolution Strategy, and next we use Artificial Neural Network to generalize the local VSC's and construct the overall VSC in order to cover the whole range of parameter variation and disturbance. Simulation on BLDC motor current control shows that the proposed VSC is superior to the conventional VSC.

  • PDF

Control of Coupled Tank Level using RVEGA SMC (RVEGA SMC를 이용한 이중 탱크의 수위 제어)

  • 김태우;이준탁
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.24 no.1
    • /
    • pp.104-111
    • /
    • 2000
  • It is very difficult to maintain the desired tank level without any overflow or any shortage in a dangerous shemical plant and in a cooling one. Futhermore, because its dynamics are very complicate and nonlinear, it is impossible to realize the precise control using the accurate mathematical model which can be applied to the various peration modes. Nonetheless, the sliding mode controller(SMC) is known as having the robust variable structures for the nonlinear control system with the parametric perturbations and with the rapid disturbances. But the adaptive tuning algorithms for their parameters are not satisfactory. Therefore, in this paper, a Real Variable Elitist Genetic Algorithm based Sliding Mode Controller (RVEGA SMC) for the precise control of the coupled tank level was tried. The SMC's switching parameters were optimized easily and rapidly by RVEGA. The simulation results showed that the tank level could be satisfactorily controlled without and overshoot and any steady-state error by the proposed RVEGA SMC.

  • PDF

New design of variable structure control based on lightning search algorithm for nuclear reactor power system considering load-following operation

  • Elsisi, M.;Abdelfattah, H.
    • Nuclear Engineering and Technology
    • /
    • v.52 no.3
    • /
    • pp.544-551
    • /
    • 2020
  • Reactor control is a standout amongst the most vital issues in the nuclear power plant. In this paper, the optimal design of variable structure controller (VSC) based on the lightning search algorithm (LSA) is proposed for a nuclear reactor power system. The LSA is a new optimization algorithm. It is used to find the optimal parameters of the VSC instead of the trial and error method or experts of the designer. The proposed algorithm is used for the tuning of the feedback gains and the sliding equation gains of the VSC to prove a good performance. Furthermore, the parameters of the VSC are tuned by the genetic algorithm (GA). Simulation tests are carried out to verify the performance and robustness of the proposed LSA-based VSC compared with GA-based VSC. The results prove the high performance and the superiority of VSC based on LSA compared with VSC based on GA.

Real-Time Control of DC Sevo Motor with Variable Load Using PID-Learning Controller (PID 학습제어기를 이용한 가변부하 직류서보전동기의 실시간 제어)

  • Kim, Sang-Hoon;Chung, In-Suk;Kang, Young-Ho;Nam, Moon-Hyon;Kim, Lark-Kyo
    • The Transactions of the Korean Institute of Electrical Engineers D
    • /
    • v.50 no.3
    • /
    • pp.107-113
    • /
    • 2001
  • This paper deals with speed control of DC servo motor using a PID controller with a gain tuning based on a Back-Propagation(BP) Learning Algorithm. Conventionally a PID controller has been used in the industrial control. But a PID controller should produce suitable parameters for each system. Also, variables of the PID controller should be changed according to environments, disturbances and loads. In this paper described by a experiment that contained a method using a PID controller with a gain tuning based on a Back-Propagation(BP) Learning Algorithm, we developed speed characteristics of a DC servo motor on variable loads. The parameters of the controller are determined by neural network performed on on-line system after training the neural network on off-line system.

  • PDF

스테인레스강 저주기 피로 수명 분포의 추계적 모델링

  • 이봉훈;이순복
    • Proceedings of the Korean Reliability Society Conference
    • /
    • 2000.04a
    • /
    • pp.213-222
    • /
    • 2000
  • In present study, a stochastic model is developed for the low cycle fatigue life prediction and reliability assessment of 316L stainless steel under variable multiaxial loading. In the proposed model, fatigue phenomenon is considered as a Markov process, and damage vector and reliability are defined on every plane. Any low cycle fatigue damage evaluating method can be included in the proposed model. The model enables calculation of statistical reliability and crack initiation direction under variable multiaxial loading, which are generally not available. In present study, a critical plane method proposed by Kandil et al., maximum tensile strain range, and von Mises equivalent strain range are used to calculate fatigue damage. When the critical plane method is chosen, the effect of multiple critical planes is also included in the proposed model. Maximum tensile strain and von Mises strain methods are used for the demonstration of the generality of the proposed model. The material properties and the stochastic model parameters are obtained from uniaxial tests only. The stochastic model made of the parameters obtained from the uniaxial tests is applied to the life prediction and reliability assessment of 316L stainless steel under variable multiaxial loading. The predicted results show good accordance with experimental results.

  • PDF

Transient Simulation Studies of Squirrel-Cage Induction Motor Directly Supplied with Aircraft Variable Frequency Power

  • Du, Xiaofei;Wang, Deqiang;Zhou, Yuanjun
    • Journal of international Conference on Electrical Machines and Systems
    • /
    • v.3 no.1
    • /
    • pp.7-14
    • /
    • 2014
  • Aircraft variable frequency power and a new application of induction motor under the aero-power are introduced. The transient models and simulation of induction motor are reviewed. A new transient model and simulation method is presented that includes deep-bar effect and magnetic saturation. Dynamic magnetizing inductance, rotor resistance and leakage reactance are considered as varying parameters in state-space model. Base on known rotor structure and speed, these parameters can be calculated.

A New Approach to Fingerprint Detection Using a Combination of Minutiae Points and Invariant Moments Parameters

  • Basak, Sarnali;Islam, Md. Imdadul;Amin, M.R.
    • Journal of Information Processing Systems
    • /
    • v.8 no.3
    • /
    • pp.421-436
    • /
    • 2012
  • Different types of fingerprint detection algorithms that are based on extraction of minutiae points are prevalent in recent literature. In this paper, we propose a new algorithm to locate the virtual core point/centroid of an image. The Euclidean distance between the virtual core point and the minutiae points is taken as a random variable. The mean, variance, skewness, and kurtosis of the random variable are taken as the statistical parameters of the image to observe the similarities or dissimilarities among fingerprints from the same or different persons. Finally, we verified our observations with a moment parameter-based analysis of some previous works.