• Title/Summary/Keyword: Variable flow velocity

Search Result 154, Processing Time 0.028 seconds

Experimental Study on Local Convective Mass Transfer From a Circular Cylinder in Uniform Shear Flow (균일 전단류내에 있는 원봉주위의 국소 대류 물질 전달에 관한 실험적 연구)

  • 류명석;성형진;정명균
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.13 no.4
    • /
    • pp.789-798
    • /
    • 1989
  • A naphthalene sublimation technique based on the heat/mass transfer analogy is used to investigate the circumferential mass transfer from a circular cylinder in an approaching uniform shear flow. Experiments are performed in a wind tunnel (450*450m $m^{2}$ with a shear flow generator which is specially manufactured for generating variable shear rates(S). The effects of an approaching shear flow are correlated with mass transfer coefficients. It is found that the local mass transfer rate on a circular cylinder is characterized with the shear parameter $K^{d}$ defined as Sd/ $U^{c}$ , where d is the radius of cylinder and $U^{c}$ is the approaching velocity at the center of cylinder. The angle on the corresponding to minimum Sherwood number is approximately proportional to the shear parameter on an upper and down number is approximately proportional to the shear parameter on an upper and down circular cylinder (0< $K^{d}$ <0.132). Changes on the averaged mass transfer rate are not significant for small $K^{d}$ , which are slightly proportional to K$d^{2}$ but the local mass transfer rates are significantly changed with the approaching shear flow.

Experimental Design of Column Flotation for Recovery of High Grade Molybdenite (고품위 몰리브덴 회수를 위한 컬럼부선 요인설계)

  • Hyun Soo Kim;Purev Oyunbileg;Chul-Hyun Park
    • Resources Recycling
    • /
    • v.32 no.6
    • /
    • pp.34-44
    • /
    • 2023
  • In this work, column flotation using factorial design was performed for recovering high-grade molybdenite concentrate. First, the flotation concentrate from Samyang Mining Plant was regrinded to a mean size of 165, 116, 46.7, and 38.4 ㎛ for an increase of the liberation degree. Tests were carried out for various variables affecting column flotation, and then the concentrates with molybdenite grade and recovery of 98.3 % and 95.28 % were obtained, respectively. Also, regression was performed using the statistical analysis program (SPSS 25) with the factorial design and experimental data on particle size, flow wash-water velocity and depressant that affect high grade. From the results, a model equation was derived to predict the molybdenite grade (MG) and recovery (MR) with the relationship between column flotation variables. Factors such as depressant concentration + wash-water velocity and particle size + depressant concentration + wash-water velocity were smaller than the significance level (0.05) and had a significant effect on the dependent variable, grade, and in the recovery model, only particle size and wash-water velocity factors affected the dependent variable, recovery.

Analysis of the Correlation between Geological Characteristics and Water Withdrawals in the Laterals of Radial Collector Well (방사형집수정의 수평집수관에서 지질특성과 취수량의 상관관계 분석)

  • Kim, Tae-Hyung;Jeong, Jae-Hoon;Kim, Min;OH, Se-Hyoung;Lee, Jae-Sung
    • The Journal of Engineering Geology
    • /
    • v.24 no.2
    • /
    • pp.201-215
    • /
    • 2014
  • This study was performed to investigate the correlation between hydraulic conductivity and the flow rate of an aquifer, with the flow rate calculated from the laterals of the radial collector well using data obtained by the development project of riverbank filtration (Second Phase) in Changwon City. The hydraulic conductivity was empirically calculated from unconsolidated sediments collected from a sandy gravel layer along the middle-to-downstream sections of the Nakdong River. The Beyer equation produced the most suitable hydraulic conductivity from the various empirical formulas employed. The calculated hydraulic conductivity ranged from 0.083 to 0.264 cm/s, with an average value of 0.159 cm/s, suggesting that the aquifer in the study area possesses a high permeability with a good distribution of sandy gravel. The relationship between the calculated hydraulic conductivity in the aquifer and the entrance velocity into the screen, the flow rate was analyzed through the linear regression analysis. From the result of regression analysis, it showed that the hydraulic conductivity and the entrance velocity into the screen and the flow rate have a linear regression equation having about 72% of the high correlation. The result of verification in the measured data between each variable showed a high suitability from being consistent with the approximately 72% in the linear regression analysis. This study demonstrates that the groundwater flow rate can be estimated within the laterals of the radial collector well using a linear regression equation, if the hydraulic conductivity of the aquifer is known. This methodology could thus be applicable to other aquifers with hydraulic conductivity and permeability parameters similar to those in the present study area.

A Numerical Study on the Flow and Heat Transfer Characteristics of Aluminum Pyramidal Truss Core Sandwich (알루미늄 피라미드 트러스 심재 샌드위치의 열유동 특성에 관한 수치해석 연구)

  • Kang, Jong-Su;Kim, Sang-Woo;Lim, Jae-Yong
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.20 no.3
    • /
    • pp.638-644
    • /
    • 2019
  • In this study, the fluid flow and heat transfer characteristics within sandwich panels are investigated using computational fluid dynamics. Within the sandwich panels having periodic cellular cores, air can freely move inside the core section so that the structure is able to perform multi-functional roles such as simultaneous load bearing and heat dissipation. Thus, there needs to examine the thermal and flow analysis with respect to design variables and various conditions. In this regard, ANSYS Fluent was utilized to explore the flow and heat transfer within the pyramidal truss sandwich structures by varying the truss angle and inlet velocity. Without the entry effect in the first unitcell, the constant rate of pressure and the constant rate of Nusselt number was observed. As a result, it was demonstrated that Nusselt number increases and friction factor decreases as the inlet velocity increases. Moreover, the rate of Nusselt number and friction factor was appreciable in the range of V=1-5m/s due to the transition from laminar to turbulent flow. Regarding the effect of design variable, the variation of truss angle did not significantly influence the characteristics.

Experimental Study on the Aerodynamic Characteristics of a High-speed Ground Vehicle Moving in a Channel (채널 내를 운행하는 초고속 지상 운행체의 공력특성에 관한 실험적 연구)

  • Choi, Dong-Soo;Kim, Dong-Hwa;Cho, Jin-Soo
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.32 no.8
    • /
    • pp.72-81
    • /
    • 2004
  • A Wind tunnel test for a high speed ground vehicle was conducted to investigate the aerodynamic interactions between the vehicle and a solid channel. The free stream velocity was 30m/see and Reynolds number per unit length was $3.1{\times}10^5/m$. Experimental devices such as a variable channel ground and guide way were used for the test. As the vehicle was close to the channel ground and guide way, lift was significantly increased, drag was slightly decreased and pitching moments were restricted to augment static stability. Using smoke-wire, flow visualization was made to confirm these results by comparing the channel and non-channel flow characteristics of the vehicle. Under the influence of the channel ground and guide way, the flow beneath the vehicle was not discharged outside wing end plates, which was the major reason of the increase in lift of the vehicle.

Evaluation of Turbidity Removal Efficiency on under Flow Water by Pore Controllable Fiber Filtration (공극제어형 섬유사 여과기를 이용한 복류수의 탁도 제거효율 평가)

  • Kim, Jeong-Hyun;Bae, Chul-Ho;Kim, Chung-Hwan;Park, No-Suk;Lee, Sun-Ju;Anh, Hyo-Won;Huh, Hyun-Chul
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.19 no.2
    • /
    • pp.135-143
    • /
    • 2005
  • It was evaluated that the effect of turbidity removal by Pore Controllable Fiber Filter(PCF) installed in NS(Naksang) small water treatmant plant(system) using under flow water as raw water in the study. The results of the study are as the followings. Firstly, the removal efficiency of turbidity by PCF without coagulation(in operation mode not using coagulants) was mostly below 20 percent. On the other hand, when operation using proper coagulants, that of turbidity was mostly over 80 percent. Secondly, slow sand filtration after PCF, total turbidity removal efficiency of final treated water was 84.3 percent, and the contribution by PCF was 57.1 percent and that of slow sand filtration was 27.7 percent. Therefore the introduction of PCF as pre-treatment process would be helpful to reduce the loading of high turbidity of slow sand filtration. Thirdly, the results of particle counter measurements showed that when operated PCF with coagulants, fine flocs captured or adsorbed at the pore of PCF were flow out into the effluents from 120 minutes after backwashing because of the increase of headloss of PCF. Therefore the decision of backwashing time should made consideration into the outflow of fine flocs from PCF. Fourth, coagulant dosages on PCF at the same turbidity was largely variable because of the effect of the raw water characteristics and the turbidity increase velocity at rainy days, therefore flexible coagulant dosages should be considered rather than fixed coagulant dosage by the influent jar-test result.

Operating Characteristics of a Continuous Two-Stage Bubbling Fluidized-Bed Process (연속식 2단 기포 유동층 공정의 운전특성)

  • Youn, Pil-Sang;Choi, Jeong-Hoo
    • Korean Chemical Engineering Research
    • /
    • v.52 no.1
    • /
    • pp.81-87
    • /
    • 2014
  • Flow characteristics and the operating range of gas velocity was investigated for a two-stage bubbling fluidized-bed (0.1 m-i.d., 1.2 m-high) that had continuous solids feed and discharge. Solids were fed in to the upper fluidized-bed and overflowed into the bed section of the lower fluidized-bed through a standpipe (0.025 m-i.d.). The standpipe was simply a dense solids bed with no mechanical or non-mechanical valves. The solids overflowed the lower bed for discharge. The fluidizing gas was fed to the lower fluidized-bed and the exit gas was also used to fluidize the upper bed. Air was used as fluidizing gas and mixture of coarse (< $1000{\mu}m$ in diameter and $3090kg/m^3$ in apparent density) and fine (< $100{\mu}m$ in diameter and $4400kg/m^3$ in apparent density) particles were used as bed materials. The proportion of fine particles was employed as the experimental variable. The gas velocity of the lower fluidized-bed was defined as collapse velocity in the condition that the standpipe was emptied by upflow gas bypassing from the lower fluidized-bed. It could be used as the maximum operating velocity of the present process. The collapse velocity decreased after an initial increase as the proportion of fine particles increased. The maximum took place at the proportion of fine particles 30%. The trend of the collapse velocity was similar with that of standpipe pressure drop. The collapse velocity was expressed as a function of bulk density of particles and voidage of static bed. It increased with an increase of bulk density, however, decreased with an increase of voidage of static bed.

MR Imaging of Slow-flow Using a Flow Phantom (유동모형을 이용한 저속유동의 자기공명영상)

  • Dae-Cheol Cheong;Kyung-Jae Jung;Young-Hwan Lee;Nak-Kwan Sung;Duck-Soo Chung;Ok-Dong Kim;Jong-Ki Kim
    • Investigative Magnetic Resonance Imaging
    • /
    • v.5 no.2
    • /
    • pp.116-122
    • /
    • 2001
  • Purpose : To find sensitivity of MRI imaging methods to slow flow phantom study was performed with conventional Spin-Echo, gradient echo based Phase Contrast, fast GRASS, and heavily T2-weighted Fast Spin Echo pulse sequences. Materials and Methods : A siphon driven flow phantom was constructed with a ventriculo-peritoneal shunt catheter and a GE phantom to achieve continuous variable flow. Four different pulse sequences including Spin-Echo, Phase Contrast, GRASS and Heavily T2-weighted Fast Spin Echo were evaluated to depict slow flow in the range from 0.08 ml/min to 1.7 ml/min and to compare signal intensities between static fluid and flowing fluid. Results : In the slow flow above 0.17 ml/min conventional Spin-Echo showed superior apparent contrast between static and flowing fluid while GRASS was more sensitive to the very slow flow below 0.17 ml/mim. It was not accurate to calculate flow and velocity below 0.1 ml/min with a modified PC imaging. Conclusion : Four different MR pulse sequences demonstrated different sensitivity to the range of slow flow from 0.08 ml/min to 1.7 ml/min. This finding may be clinically useful to measure CSF shunt flow or detecting CSF collection and thrombosis.

  • PDF

Analyzing Spatio-Temporal Variation of Groundwater Recharge in Jeju Island by using a Convolution Method (컨벌루션 기법을 이용한 제주도 지하수 함양량의 시공간적 변화 분석)

  • Shin, Kyung-Hee;Koo, Min-Ho;Chung, Il-Moon;Kim, Nam-Won;Kim, Gi-Pyo
    • Journal of Environmental Science International
    • /
    • v.23 no.4
    • /
    • pp.625-635
    • /
    • 2014
  • Temporal variation of groundwater levels in Jeju Island reveals time-delaying and dispersive process of recharge, mainly caused by the hydrogeological feature that thickness of the unsaturated zone is highly variable. Most groundwater flow models have limitations on delineating temporal variation of recharge, although it is a major component of the groundwater flow system. A new mathematical model was developed to generate time series of recharge from precipitation data. The model uses a convolution technique to simulate the time-delaying and dispersive process of recharge. The vertical velocity and the dispersivity are two parameters determining the time series of recharge for a given thickness of the unsaturated zone. The model determines two parameters by correlating the generated recharge time series with measured groundwater levels. The model was applied to observation wells of Jeju Island, and revealed distinctive variations of recharge depending on location of wells. The suggested model demonstrated capability of the convolution method in dealing with recharge undergoing the time-delaying and dispersive process. Therefore, it can be used in many groundwater flow models for generating a time series of recharge.

Development and application of automation algorithm for optimal parameter combination in two-dimensional flow analysis model (2차원 흐름해석모형의 매개변수 최적조합결정 자동화 알고리즘의 개발과 적용)

  • An, Sehyuck;Shin, Eun-taek;Song, Chang Geun;Park, Sungwon
    • Journal of Korea Water Resources Association
    • /
    • v.56 no.spc1
    • /
    • pp.1007-1014
    • /
    • 2023
  • Two-dimensional flow analysis, a fundamental component of hydrodynamics, plays a pivotal role in numerically simulating fluid behavior in rivers and waterways. This modeling approach heavily relies on parameters such as eddy viscosity and roughness coefficient to accurately represent flow characteristics. Therefore, combination of appropriate parameters is very important to accurately simulate flow characteristics. In this study, an automation algorithm was developed and applied to find the optimal combination of parameters. Previously, when applying a two-dimensional flow analysis model, former researchers usually depend on the empirical approach, which causes many difficulties in finding optimal variable values. Using the experimental data, we tracked errors according to the combination of various parameters and applied the algorithm that can determine the optimal combination of parameters with the Python language. The automation algorithm can easily determine the most accurate combination by comparing the flow velocity error values among the two-dimensional flow analysis results among the combinations of 121 (11×11) parameters. In the perspective of utilizing automation algorithm, there is an expected high utility in promptly and straightforwardly determining the optimal combination of parameters with the smallest error.