• Title/Summary/Keyword: Variable Nozzle

Search Result 119, Processing Time 0.021 seconds

Experimental / Computational Study of a variable Critical Nozzle Flow (가변형 임계노즐 유동에 관한 실험/수치해석적 연구)

  • Kim, Jae-Hyung;Kim, Heuy-Dong;Park, Kyung-Am
    • 유체기계공업학회:학술대회논문집
    • /
    • 2003.12a
    • /
    • pp.167-173
    • /
    • 2003
  • For the measurement of mass flow rate at a wide range of operation conditions, it is required that the critical nozzle gas different diameters, since the mass flow rate through the critical nozzle depends on the nozzle supply conditions and the nozzle throat diameter. In the present study, both computational and experimental investigations are performed to explore the variable critical nozzle. Computational work using the 2-dimensional, axisymmetric, compressible Navier-Stokes equations are carried out to simulate the gas flow through variable critical nozzle. In experimnet, a cylinder with several different diameters is inserted into the critical nozzle to vary the nozzle throat diameter. Computational results are compared with the experimented ones. The computed results are in close agreement with experiment. It is found that the displacement and momentum thickness of variable critical nozzle are given as a function of Reynolds numbers. The discharge coefficient of the variable critical nozzle is predicted using an empirical equation.

  • PDF

A Fundamental Study of a Variable Critical Nozzle Flow (가변형 임계 노즐유동에 관한 기초적 연구)

  • Kim, Jae-Hyung;Kim, Heuy-Dong;Park, Kyung-Am
    • Proceedings of the KSME Conference
    • /
    • 2003.11a
    • /
    • pp.484-489
    • /
    • 2003
  • The mass flow rate of gas flow through critical nozzle depends on the nozzle supply conditions and the cross-sectional area at the nozzle throat. In order that the critical nozzle can be operated at a wide range of supply conditions, the nozzle throat diameter should be controlled to change the flow passage area. This can be achieved by means of a variable critical nozzle. In the present study, both experimental and computational works are performed to develop variable critical nozzle. A cone-cylinder with a diameter of d is inserted into conventional critical nozzle. It can move both upstream and downstream, thereby changing the cross-sectional area of the nozzle throat. Computational work using the axisymmetric, compressible Navier-Stokes equations is carried out to simulate the variable critical nozzle flow. An experiment is performed to measure the mass flow rate through variable critical nozzle. The present computational results are in close agreement with measured ones. The boundary layer displacement and momentum thickness are given as a function of Reynolds number. An empirical equation is obtained to predict the discharge coefficient of variable critical nozzle.

  • PDF

Design Study on a Variable Intake and a Variable Nozzle for Hypersonic Engines

  • Taguchi, Hideyuki;Futamura, Hisao;Shimodaira, Kazuo;Morimoto, Tetsuya;Kojima, Takayuki;Okai, Keiichi
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2004.03a
    • /
    • pp.713-721
    • /
    • 2004
  • Variable air intake and variable exhaust nozzle of hypersonic engines are designed and tested in this study. Dimensions for variable geometry air intake, ram combustor and variable geometry exhaust nozzle are defined based on the requirements of a pre-cooled turbojet engine. Hypersonic Ramjet Engine is designed as a scaled test bed for each component. Actuation forces of moving parts for variable intake and variable nozzle are reduced by balancing the other force in the opposite direction. A demonstrator engine which includes variable intake and variable nozzle is designed and the components are fabricated. Composite material with silicone carbide is applied for high temperature parts under oxidation environment such as leading edge of the variable intake and combustor liner. Internal cooling structure is adopted for both moving and static parts of the variable nozzle. Pressure recovery and mass capture ratio of the variable intake at Mach 5 is obtained by a hypersonic wind tunnel test. Flow characteristics of the variable nozzle are obtained by a low temperature flow test. Wall temperature and heat flux of the nozzle at Mach 3 is obtained by a firing test. As results, the intake and the nozzle are proved to be used at designed pressure and temperature environment.

  • PDF

Study on Synchronization Characteristics of a Variable Nozzle in Environment of Simulated Combustion Pressure (연소압 모사 환경 상태의 가변노즐 동기화 특성 연구)

  • Park, Dong-Chang;Lee, Sang-Youn;Lee, Ju-Young;Cho, Sung-Won;Yun, Su-Jin;Yoon, Hyun-Gull;Lim, Jin-Shik
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2011.11a
    • /
    • pp.919-921
    • /
    • 2011
  • Variable nozzles are used to enhance the effectiveness of aircraft engines at various altitudes. Unsynchronized movements of variable nozzle flaps affect the direction of thrust in case the variable nozzle consists of many flaps. A synchronization test system was developed to verify the synchronization characteristics of variable nozzle mechanism including flaps. The test system has a capability to simulate combustion pressure in variable nozzle space. The test system was used to qualify the synchronization characteristics of a variable nozzle flaps affected by magnitude and uniformity of simulated combustion pressure, and time delay of each nozzle actuators.

  • PDF

NUMERICAL STUDY OF VARIABLE GEOMETRY NOZZLE FLOW USING A MESH DEFORMATION TECHNIQUE ON HYBRID UNSTRUCTURED MESHES (비정렬 혼합 격자계에서 격자 변형 기법을 이용한 가변노즐 유동 해석)

  • Kim, J.W.;Kwon, O.J.
    • Journal of computational fluids engineering
    • /
    • v.18 no.3
    • /
    • pp.26-33
    • /
    • 2013
  • In the present study, unsteady flow simulations of a variable geometry nozzle were conducted using a two-dimensional flow solver based on hybrid unstructured meshes. The variable geometry nozzle is used to achieve efficient performances of aircraft engines at various operating conditions. To describe the motion of the variable geometry nozzle, an algebraic method based on the basis decomposition of normal edge vector was used for the deformation of viscous elements. A ball-vertex spring analogy was used for inviscid elements. The aerodynamic data were obtained for a range of nozzle pressure ratios, and the validations were made by comparing the present results with available experimental data. The unsteady nozzle flows were simulated with an oscillating diverging section and a converging-diverging section. It was found that the nozzle performances are influenced by the nozzle exit flow characteristics, mass flow rate, as well as unsteady effects. These unsteady effects are shown to behave differently depending on the frequency of the nozzle motion.

Study on Flow Fields in Variable Area Nozzles for Radial Turbines

  • Tamaki, Hideaki;Unno, Masaru
    • International Journal of Fluid Machinery and Systems
    • /
    • v.1 no.1
    • /
    • pp.47-56
    • /
    • 2008
  • The flow behind the variable area nozzle which corresponds to the flow at the leading edge of the impeller was measured with a 3-hole yaw probe and calculated with CFD. Two nozzle throat-areas were investigated. One is the smallest and the other is the largest opening for the variable nozzle. Test results agreed with the calculated results qualitatively. The leakage flow through the tip clearance of the nozzle vane significantly affected the flow field downstream of the nozzle vane with the smallest opening. However, the effect on leakage flow on the flow field downstream of the nozzle vane with the largest opening was very weak and the effect of wake is dominant.

Development of a Synchronization Test System for a Variable Nozzle (가변노즐의 동기화시험장치 개발)

  • Park, Dong-Chang;Lee, Sang-Youn;Lee, Ju-Young;Yun, Su-Jin;Cho, Sung-Won;Youn, Hyun-Gul
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2011.04a
    • /
    • pp.130-131
    • /
    • 2011
  • In the present work, a synchronization test system for variable nozzle is described. Variable nozzles are used to enhance the effectiveness of aircraft engines at various altitudes. The synchronization test system was developed to verify the dynamic characteristics and synchronization of variable nozzle mechanism including flaps. The system with a variable nozzle was analyzed, before its fabrication, by a multi-body dynamics analysis software RecurDyn. The newly developed test system is being used to show the synchronization capability of a variable nozzle system.

  • PDF

A Numerical Study on Effects of Displacement of a Variable Area Nozzle on Flow and Thrust in a Jet Engine (가변노즐의 변위가 제트 엔진의 유동 및 추력특성에 미치는 영향에 관한 수치해석)

  • Park, Junho;Sohn, Chae Hoon;Park, Dong Chang
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.17 no.5
    • /
    • pp.1-9
    • /
    • 2013
  • Variable area nozzle, where both throat and exit area vary, is required for optimal expansion and optimal nozzle shape upon operation of after-burner. Steady-state and transient analyses are carried out for each condition with and without afterburner operation and as a function of the location of the nozzle flap. Effects of that nozzle displacement on flow and thrust characteristics are analyzed from numerical results. With variable area nozzle adopted, the combustion field is variable in time, leading to periodically variable thrust. For off-design conditions, flow separation shows up due to over expansion at the flap tips and shock wave does in the nozzle due to under expansion. The undesirable phenomena can be solved by control of variable area nozzle.

Numerical Analysis and Design of the 2-D Variable Convergent-Divergent Thrust Vectoring Nozzle (2-D 가변 추력편향 노즐 설계 및 유동해석)

  • Kim, Yoon-Hee;Kang, Hyung-Seok;Choi, Seong-Man;Chang, Hyun-Soo
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.15 no.5
    • /
    • pp.27-34
    • /
    • 2011
  • A numerical analysis was peformed for the supersonic aircraft with variable pitch thrust vector nozzle. Based on the requirement of the mixed turbofan engine of the supersonic aircraft, two dimensional thrust vector nozzle with variable pitch angle was designed. To investigate the effect of the thrust vectoring nozzle, the numerical analysis was conducted by using Fluent under the several pitch deflection angle.

Numerical Analysis and Design of the 2-D Variable Convergent-Divergent Thrust Vectoring Nozzle (2-D 가변 추력편향 노즐 설계 및 유동해석)

  • Kim, Yoon-Hee;Choi, Seong-Man;Chang, Hyun-Soo
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2010.11a
    • /
    • pp.170-176
    • /
    • 2010
  • A numerical analysis was peformed for the supersonic aircraft with variable pitch thrust vector nozzle. Based on the requirement of the mixed turbofan engine of the supersonic aircraft, two dimensional thrust vector nozzle with variable pitch angle was designed. To investigate the effect of the thrust vectoring nozzle, the numerical analysis was conducted by using Fluent under the several pitch deflection angle.

  • PDF