• Title/Summary/Keyword: Variability Design

Search Result 479, Processing Time 0.029 seconds

The Research Trends in Journal of the Korean Institute of Landscape Architecture using Topic Modeling and Network Analysis (토픽모델링과 연결망 분석을 활용한 국내 조경 분야 연구 동향 분석 - 한국조경학회지를 대상으로 -)

  • Park, Jae-Min;Kim, Yong Hwan;Sung, Jong-Sang;Lee, Sang-Seok
    • Journal of the Korean Institute of Landscape Architecture
    • /
    • v.49 no.2
    • /
    • pp.17-26
    • /
    • 2021
  • For the past half century, the Journal of the Korean Landscape Architecture has been leading the landscape architecture research and industry inclusively. In this study, abstracts of 1,802 articles were collected and analyzed with topic modeling and network analysis method. As a result of this paper, a total of 27 types of subjects were identified. Health and healing in the field of environmental psychology, garden and aesthetics, participation and community, modernity, place and placenness, microclimate, tourism and social equity also have been continued as important research area in this journal. Modernity, community and urban regeneration is hot topics and ecological landscape related topics were cold topics. Although there was a difference by subject, the variability of the research subjects appeared after the 2000s. In Network analysis, it shows that 'Park' is a representative keyword that can symbolize the journal, and 'landscape' is also important a leading area of the journal. Looking at the overall structure of the network, it can be seen that the journal conducts research on 'utilizing', 'using', and creating 'park', 'landscape', and 'space'. This study is meaningful in that it grasped the overall research trend of the journal by using topic modeling and network analysis of text mining.

Strength and Compaction Characteristics of Binder-Stabilized Subgrade Material in Ulsan Area - Main Binder Components : CaO and SO3 - (고화제로 안정처리 된 울산지역 노상재료의 강도 및 다짐특성 - 주 성분이 CaO와 SO3인 고화제 -)

  • Han, Sang-Hyun;Yea, Geu-Guwen;Kim, Hong-Yeon
    • Journal of the Korean Geotechnical Society
    • /
    • v.34 no.12
    • /
    • pp.105-113
    • /
    • 2018
  • In this study, the engineering properties including bearing capacity of subgrades stabilized with a binder are analyzed by laboratory and field experiments. The main components of the binder are CaO and $SO_3$. After the binder was mixed with a low plasticity clay, the passing rates were relatively decreased as the sieve mesh size increased. Not only did the soil type change to silty sand, but engineering properties, such as the plasticity index and modified California bearing ratio (CBR), were improved for the subgrade. A comparison of the compaction curves of the stabilized subgrade and field soil compacted with the same energy demonstrated an increase of approximately 6% in the maximum dry unit weight, slight decrease in optimum moisture content, and considerable increase improvement in grain size. In the modified CBR test, the effect of unit weight and strength increase of the modified soil (with a specific amount of binder) was remarkably improved. As the proportion of granulated material increased after the addition of binder, the swelling was reduced by 3.3 times or more during initial compaction and 6.5 times by final compaction. The unconfined compressive strength of the specimens was maintained at the homogeneous value with a constant design strength. The stabilized subgrade was validated by applying it in the field under the same conditions; this test demonstrated that the bearing capacity coefficients at all six sites after one day of compaction exceeded the target value and exhibited good variability.

Selection of Climate Indices for Nonstationary Frequency Analysis and Estimation of Rainfall Quantile (비정상성 빈도해석을 위한 기상인자 선정 및 확률강우량 산정)

  • Jung, Tae-Ho;Kim, Hanbeen;Kim, Hyeonsik;Heo, Jun-Haeng
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.39 no.1
    • /
    • pp.165-174
    • /
    • 2019
  • As a nonstationarity is observed in hydrological data, various studies on nonstationary frequency analysis for hydraulic structure design have been actively conducted. Although the inherent diversity in the atmosphere-ocean system is known to be related to the nonstationary phenomena, a nonstationary frequency analysis is generally performed based on the linear trend. In this study, a nonstationary frequency analysis was performed using climate indices as covariates to consider the climate variability and the long-term trend of the extreme rainfall. For 11 weather stations where the trend was detected, the long-term trend within the annual maximum rainfall data was extracted using the ensemble empirical mode decomposition. Then the correlation between the extracted data and various climate indices was analyzed. As a result, autumn-averaged AMM, autumn-averaged AMO, and summer-averaged NINO4 in the previous year significantly influenced the long-term trend of the annual maximum rainfall data at almost all stations. The selected seasonal climate indices were applied to the generalized extreme value (GEV) model and the best model was selected using the AIC. Using the model diagnosis for the selected model and the nonstationary GEV model with the linear trend, we identified that the selected model could compensate the underestimation of the rainfall quantiles.

Low-Flow Frequency Analysis and Drought Outlook in Water Districts Under Climate Change Scenarios : A Case Study of Gimcheon-si, Korea (기후변화 시나리오에 따른 용수구역 기반 소구역의 가뭄전망 및 갈수빈도해석 : 김천시 지역을 중심으로)

  • Kim, Jieun;Lee, Baesung;Yoo, Jiyoung;Kwon, Hyun-Han;Kim, Tae-Woong
    • Journal of Wetlands Research
    • /
    • v.23 no.1
    • /
    • pp.14-26
    • /
    • 2021
  • Increase of climate variability due to climate change has paved the way for regional drought monitoring and outlook. In particular, Gimcheon-si, Gyeongsangbuk-do, is suffering from frequent and periodic drought damage as the frequency and magnitude of drought are increasing due to climate change. For this reason, it is necessary to analyze drought characteristics for sub-districts based on water district and calculate the basic low-flow considering climate change. In this study, meteorological and hydrological drought outlook were carried out for 8 sub-districts considering the water supply system and regional characteristics of Gimcheon-si according to various climate change scenarios. In addition, the low-flow frequency analysis for the near future was also performed using the total amount of runoff and the low-flow. The overall results indicated that, meteorological droughts were found to be dangerous in the S0(1974~2019) period and hydrological droughts would be dangerous in the S2(2041~2070) period for RCP 4.5 and in S3(2071~2099) period for RCP 8.5. The results of low-flow frequency analysis indicated that future runoff would increase but drought magnitude and frequency would increase further. The results and methodology may be useful for preparing local governments' drought measures and design standards for local water resources facilities.

Analysis of the integral fuel tank considering hygrothermal enviornmental factors (열습도 환경요소를 고려한 일체형 복합재 연료탱크의 해석)

  • Moon, Jin-Bum;Kim, Soo-Hyun;Kim, Chun-Gon
    • Composites Research
    • /
    • v.20 no.5
    • /
    • pp.64-69
    • /
    • 2007
  • Matrix dominant properties of composites are largely degraded under harmful environments such as temperature and humidity. Therefore we should consider the harmful environmental factors in the design of an UAV integral fuel tank subjected to high temperature and high humidity. The harmful environment experiment was performed for carbon/epoxy composites made of a unidirectional prepreg USN175B, and a plain woven fabric prepreg WSN3. The immersion experiment was performed under $90^{\circ}C$. The specimens were tested when the weight gam of specimen was saturated. The specimens were tested under $74^{\circ}C$ to obtain tensile and inplane shear properties. The results showed that the matrix dominant properties were extremely degraded by hygrothermal environment. To consider the variability of load, the anti-optimization method was applied. By using this method, the worst load case was found by comparing the load convex model and stability boundary. The stability boundary was obtained by analysis of the integral wing fuel tank of UAV using degraded properties. To do this, it was known that the worst load case of the integral wing fuel tank was the hovering mode load case.

Deep Learning based Estimation of Depth to Bearing Layer from In-situ Data (딥러닝 기반 국내 지반의 지지층 깊이 예측)

  • Jang, Young-Eun;Jung, Jaeho;Han, Jin-Tae;Yu, Yonggyun
    • Journal of the Korean Geotechnical Society
    • /
    • v.38 no.3
    • /
    • pp.35-42
    • /
    • 2022
  • The N-value from the Standard Penetration Test (SPT), which is one of the representative in-situ test, is an important index that provides basic geological information and the depth of the bearing layer for the design of geotechnical structures. In the aspect of time and cost-effectiveness, there is a need to carry out a representative sampling test. However, the various variability and uncertainty are existing in the soil layer, so it is difficult to grasp the characteristics of the entire field from the limited test results. Thus the spatial interpolation techniques such as Kriging and IDW (inverse distance weighted) have been used for predicting unknown point from existing data. Recently, in order to increase the accuracy of interpolation results, studies that combine the geotechnics and deep learning method have been conducted. In this study, based on the SPT results of about 22,000 holes of ground survey, a comparative study was conducted to predict the depth of the bearing layer using deep learning methods and IDW. The average error among the prediction results of the bearing layer of each analysis model was 3.01 m for IDW, 3.22 m and 2.46 m for fully connected network and PointNet, respectively. The standard deviation was 3.99 for IDW, 3.95 and 3.54 for fully connected network and PointNet. As a result, the point net deep learing algorithm showed improved results compared to IDW and other deep learning method.

Evaluation of Chloride Diffusion Behavior and Analysis of Probabilistic Service Life in Long Term Aged GGBFS Concrete (장기 재령 GGBFS 콘크리트의 염화물 확산 거동 평가 및 확률론적 염해 내구수명 해석)

  • Yoon, Yong-Sik;Kim, Tae-Hoon;Kwon, Seung-Jun
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.24 no.3
    • /
    • pp.47-56
    • /
    • 2020
  • In this study, three levels of W/B(Water to Binder) ratio (0.37, 0.42, 0.47) and substitution ratio of GGBFS (Ground Granulated Blast Furnace Slag) rate (0 %, 30 %, 50 %) were considered to perform RCPT (Rapid Chloride Diffusion Test) at the 1,095 aged day. Accelerated chloride diffusion coefficient and passed charge of each concrete mixture were assessed according to Tang's method and ASTM C 1202, and improving behaviors of durability performance with increasing aged days are analyzed based on the test results of previous aged days from the preceding study. As the age of concrete increases, the passed charge and diffusion coefficient have been significantly reduced, and especially the concrete specimens containing GGBFS showed a significantly more reduction than OPC(Ordinary Portland Cement) concrete specimen by latent hydraulic activity. In the case of OPC concrete's results of passed charge, at the 1,095 days, two of them were still in the "Moderate" class. So, if only OPC is used as the binder of concrete, the resistance performance for chloride attack is weak. In this study, the time-parameters (m) were derived based on the results of the accelerated chloride diffusion coefficient, and the deterministic and probabilistic analysis for service life were performed by assuming the design variable as a probability function. For probabilistic service life analysis, durability failure probabilities were calculated using Monte Carlo Simulation (MCS) to evaluate service life. The service life of probabilistic method were lower than that of deterministic method, since the target value of PDF (Probability of Durability Failure) was set very low at 10 %. If the target value of PDF suitable for the purpose of using structure can be set and proper variability can be considered for each design variable, it is believed that more economical durability design can be made.

Design of Ultrasonic Nebulizer for Inhalation Toxicology Study of Cadmium with Application of Engineering Methodology and Performance Evaluation with Light-Scattering Photometer (공학적 기법을 응용한 카드뮴의 흡입독성 연구를 위한 초음파 네뷸라이져의 설계 그리고 광산란 광도계를 이용한 성능평가)

  • Jeung Jae Yeal;Milton Donald K.;Kim Tae Hyeung;Lee Jong Young;Chong Myoung Soo;Ko Kwang Jae;Kim Sang Duck;Kang Sung Ho;Song Young Sun;Lee Ki Nam
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.16 no.3
    • /
    • pp.464-471
    • /
    • 2002
  • Author applied several engineering methodologies to classical ultrasonic nebulizer to cope with it's demerits. After several trials and errors, we got the several meaningful results. To evaluate the modified ultrasonic nebulizer for inhalation toxicology of cadmium, author used light-scattering photometer. This paper is the one part of inhalation exposure systems for inhalation toxicology study of cadmium. According to the testing conditions, source temperature 50℃ and inlet-duct band temperature 150℃, aerosol generation results for sodium chloride and cadmium chloride were as followings: Coefficients of variation(CV) of sodium chloride and cadmium chloride for repeated trials were 3.38 and 4.77 for 10g, 2.47 and 5.02 for 5g, and 4.70 and 2.98 for 2.5g. All the CVs were within 10% of acceptance variability. Count Per Minute(CPM) changes of NaCl and CdCl₂ for 5 repeated trials were similar. CPM ratios of CdCl₂/NaCl were 1.13 for 10g, 0.76 for 5g, and 1.06 for 2.5g. Relative aerosol generation of cadmium chloride to sodium chloride was the highest in 10g. Efficiency increases of 24.50% for 5g NaCl, 14.91 % for 2.5g NaCl, and 16.48% for 2.5g CdCl₂ with respect to theoretical efficiency were observed but 0.04% efficiency decrease was observed in 5g CdC₂. According to the modifications of source temperature(20, 50, 70℃) and inlet-duct band temperature(20, 50, 100, 150, 200℃), aerosol generation results for NaCl and CdCl₂ were as followings: CPM trends for each quantity excepting 10g NaCl in inlet-duct band temperature 200℃ were similar, and the highest CPM was observed in source temperature 70℃ to each inlet-duct band temperature. The highest CPMs to 10, 5, and 2.5g NaCl were observed in source temperature 70℃ and inlet-duct band temperature 20℃. Aerosol generation of cadmium chloride was increased with the higher source temperature, excepting inlet-duct band temperature 200℃. The highest CPMs for 10, 5, and 2.5g CdCl₂ were observed in source temperature 70℃ and inlet-duct band temperature 20℃, and this trend was similar to NaCl aerosol generation The highest CPMs for 10, 5, and 2.5g CdCl₂ were observed in source temperature 70℃ and inlet-duct band temperature 20℃, and this result was similar to NaCl aerosol generation. Observed efficiencies of 5 and 2.5g NaCl were similar to ifs theoretical efficiency but -3.08% efficiency decrease of 5g CdCl₂, 17.47% efficiency increase of 2.5g CdCl₂ were observed. CPM ratio of CdCl₂/NaCl of 10g was different to 5 and 2.5g, and 2.5g ratio was higher than 5g ratio. In conclusion, to get maximum aerosol generation for NaCl and CdCl₂ will be the conditions that set the appropriate inlet-duct band temperature for each materials and increase the source temperature. Sodium chloride can be used to evaluate the performance and predict the concentration for cadmium aerosol in aerosol generator and inhalation exposure system.

Establishment of A WebGIS-based Information System for Continuous Observation during Ocean Research Vessel Operation (WebGIS 기반 해양 연구선 상시관측 정보 체계 구축)

  • HAN, Hyeon-Gyeong;LEE, Cholyoung;KIM, Tae-Hoon;HAN, Jae-Rim;CHOI, Hyun-Woo
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.24 no.1
    • /
    • pp.40-53
    • /
    • 2021
  • Research vessels(R/Vs) used for ocean research move to the planned research area and perform ocean observations suitable for the research purpose. The five research vessels of the Korea Institute of Ocean Science & Technology(KIOST) are equipped with global positioning system(GPS), water depth, weather, sea surface layer temperature and salinity measurement equipment that can be observed at all times during cruise. An information platform is required to systematically manage and utilize the data produced through such continuous observation equipment. Therefore, the data flow was defined through a series of business analysis ranging from the research vessel operation plan to observation during the operation of the research vessel, data collection, data processing, data storage, display and service. After creating a functional design for each stage of the business process, KIOST Underway Meteorological & Oceanographic Information System(KUMOS), a Web-Geographic information system (Web-GIS) based information platform, was built. Since the data produced during the cruise of the R/Vs have characteristics of temporal and spatial variability, a quality management system was developed that considered these variabilities. For the systematic management and service of data, the KUMOS integrated Database(DB) was established, and functions such as R/V tracking, data display, search and provision were implemented. The dataset provided by KUMOS consists of cruise report, raw data, Quality Control(QC) flagged data, filtered data, cruise track line data, and data report for each cruise of the R/V. The business processing procedure and system of KUMOS for each function developed through this study are expected to serve as a benchmark for domestic ocean-related institutions and universities that have research vessels capable of continuous observations during cruise.