DOI QR코드

DOI QR Code

Establishment of A WebGIS-based Information System for Continuous Observation during Ocean Research Vessel Operation

WebGIS 기반 해양 연구선 상시관측 정보 체계 구축

  • Received : 2021.01.20
  • Accepted : 2021.02.18
  • Published : 2021.03.31

Abstract

Research vessels(R/Vs) used for ocean research move to the planned research area and perform ocean observations suitable for the research purpose. The five research vessels of the Korea Institute of Ocean Science & Technology(KIOST) are equipped with global positioning system(GPS), water depth, weather, sea surface layer temperature and salinity measurement equipment that can be observed at all times during cruise. An information platform is required to systematically manage and utilize the data produced through such continuous observation equipment. Therefore, the data flow was defined through a series of business analysis ranging from the research vessel operation plan to observation during the operation of the research vessel, data collection, data processing, data storage, display and service. After creating a functional design for each stage of the business process, KIOST Underway Meteorological & Oceanographic Information System(KUMOS), a Web-Geographic information system (Web-GIS) based information platform, was built. Since the data produced during the cruise of the R/Vs have characteristics of temporal and spatial variability, a quality management system was developed that considered these variabilities. For the systematic management and service of data, the KUMOS integrated Database(DB) was established, and functions such as R/V tracking, data display, search and provision were implemented. The dataset provided by KUMOS consists of cruise report, raw data, Quality Control(QC) flagged data, filtered data, cruise track line data, and data report for each cruise of the R/V. The business processing procedure and system of KUMOS for each function developed through this study are expected to serve as a benchmark for domestic ocean-related institutions and universities that have research vessels capable of continuous observations during cruise.

해양연구를 위해 사용하는 연구선은 계획된 연구해역으로 이동하여 연구목적에 맞는 해양관측을 수행한다. 한국해양과학기술원(KIOST, Korea Institute of Ocean Science & Technology)이 보유하고 있는 5척의 연구선에는 항해 중에 상시 관측할 수 있는 GPS, 수심, 기상, 표층 수온 및 염분 측정 장비가 탑재되어 있다. 이러한 상시관측 장비를 통해 생산되는 데이터를 체계적으로 관리하고 활용하기 위한 정보 플랫폼이 요구된다. 따라서 연구선 운항계획에서부터 연구선 운항 중 관측, 데이터수집, 데이터처리, 데이터저장, 표출 및 제공서비스에 이르는 일련의 업무 분석을 통해 업무절차를 정의하였다. 업무 절차의 각 단계 별 기능 설계를 거친 후, WebGIS 기반의 정보 플랫폼인 KUMOS(KIOST Underway Meteorological & Oceanographic Information System)를 구축하였다. 연구선 항해 중에 생산되는 데이터는 시·공간적 변화가 있는 특성이 있어 이러한 변동성을 고려한 데이터의 품질관리 체계를 개발하였다. 데이터의 체계적인 관리와 서비스를 위해 KUMOS 통합DB를 구축하고 연구선 항적, 데이터 표출, 검색 및 제공 등의 기능을 구현하였다. KUMOS에서 제공하는 데이터 셋은 연구선의 항해 별 운항결과리포트(cruise report), 원시데이터(raw data), 품질관리 플래그(Quality Control(QC) flagged data) 데이터, 필터 데이터(filtered data), 항적도 데이터(cruise track line), 데이터 리포트(cruise data report) 등으로 구성되어있다. 본 연구를 통해 개발한 KUMOS의 기능 별 업무처리 절차와 체계는 연구선 항해 중 상시관측이 가능한 연구선을 보유하고 있는 국내 해양관련 기관 및 대학에도 벤치마킹 역할을 할 것으로 기대된다.

Keywords

References

  1. Drushka, K., W.E., Asher, J., Sprintall, S.T., Gille and C. Hoang. 2019. Global patterns of submesoscale surface salinity variability. Journal of Physical Oceanography, 49(7):1669-1685. https://doi.org/10.1175/JPO-D-19-0018.1
  2. El-Sharkawi, M.A., A. Upadhye, S. Lu, H. Kirkham, B.M. Howe, T. McGinnis and P. Lancaster. 2005. North east pacific time-integrated undersea networked experiments (NEPTUNE): Cable switching and protection. IEEE Journal of Oceanic Engineering, 30(1):232-240. https://doi.org/10.1109/JOE.2004.839938
  3. GOSUD. 2020. About GOSUD. http://www.gosud.org/. (Accessed November 10, 2020).
  4. Kim, S.T., T.Y. Lee and Y. Kim. 2012. Deriving the Determining Factor for the Management of Oceanographic Data. Journal of Information Management, 43(3):97-115. https://doi.org/10.1633/JIM.2012.43.3.097
  5. Korea Marine Environment(KOEM). 2021. Marine Environment Information System. https://www.meis.go.kr/mei/observe/wemosensor.do. (Accessed January 12, 2021).
  6. Lee. S.H., S.H. Lee and S.D. Kim. 2012. Analysis of scientific data collection cases in the marine field. In Proceedings of the Korea Technology Innovation Society Conference. Asian Society for Innovation and Policy. pp.453-464.
  7. Medina-Lopez, E., and L. Urena-Fuentes. 2019. High-resolution sea surface temperature and salinity in coastal areas worldwide from raw satellite data. Remote Sensing, 11(19):2191. https://doi.org/10.3390/rs11192191
  8. Nam, S.Y, Y.B, Kim, J.J. Park, and K.I Chang. 2014. Status and Prospect of Unmanned, Global Ocean Observations Network. Journal of the Korean Society of Oceanography, 19(3):202-214.
  9. Ocean networks canada. 2020. About Ocean Networks Canada. https://www.oceannetworks.ca/about-us. (Accessed November 10, 2020).
  10. Smith, S.R., G. Alory, A. Andersson, W. Asher, A. Baker, D.I. Berry, K. Drushka, D. Figurskey, E. Freeman, P. Holthus and T. Jickells. 2019. Ship-based contributions to global ocean, weather, and climate observing systems. Front. Mar. Sci. 6:434. doi: 10.3389/fmars.2019.00434.
  11. Smith, S.R., K. Briggs, M.A. Bourassa, J. Elya and C.R. Paver. 2018. Shipboard automated meteorological and oceanographic system data archive: 2005-2017. Geoscience Data Journal, 5(2):73-86. https://doi.org/10.1002/gdj3.59
  12. The Marine Geoscience Data System(MGDS). 2020. MGDS Overview. https://www.marine-geo.org/index.php. (Accessed November 10, 2020).
  13. Union, J.I.G. 2017. shipboard automated Meteorological and Oceanographic system (saMOs)-a critical component of Global Ocean Observation Framework. J. Ind. Geophys. Union (November 2017), 21(6):549-550.