DOI QR코드

DOI QR Code

Analysis of the integral fuel tank considering hygrothermal enviornmental factors

열습도 환경요소를 고려한 일체형 복합재 연료탱크의 해석

  • 문진법 (한국과학기술원 기계항공시스템학부 항공우주공학 대학원) ;
  • 김수현 (한국과학기술원 기계항공시스템학부 항공우주공학 대학원) ;
  • 김천곤 (한국과학기술원 기계항공시스템학부 항공우주공학)
  • Published : 2007.10.31

Abstract

Matrix dominant properties of composites are largely degraded under harmful environments such as temperature and humidity. Therefore we should consider the harmful environmental factors in the design of an UAV integral fuel tank subjected to high temperature and high humidity. The harmful environment experiment was performed for carbon/epoxy composites made of a unidirectional prepreg USN175B, and a plain woven fabric prepreg WSN3. The immersion experiment was performed under $90^{\circ}C$. The specimens were tested when the weight gam of specimen was saturated. The specimens were tested under $74^{\circ}C$ to obtain tensile and inplane shear properties. The results showed that the matrix dominant properties were extremely degraded by hygrothermal environment. To consider the variability of load, the anti-optimization method was applied. By using this method, the worst load case was found by comparing the load convex model and stability boundary. The stability boundary was obtained by analysis of the integral wing fuel tank of UAV using degraded properties. To do this, it was known that the worst load case of the integral wing fuel tank was the hovering mode load case.

복합재료의 모재지배 물성은 온도나 습도와 같은 환경에 의해서 크게 저하되기 때문에 고온 다습한 환경에서 운용되는 UAV의 일체형 복합재 연료탱크를 설계함에 있어 이러한 유해환경 요소들을 반드시 고려하여야 한다. 본 연구에서는 스마트무인기에 사용될 일방향 복합재료 USN 175B와 직조 복합재료인 WSN3K에 대해서 $90^{\circ}C$에서 담수 침수 실험을 수행하여 모재의 수분 흡수량이 포화될 때까지 노화시킨 후 $74^{\circ}C$의 고온환경에서 인장 및 평면 전단 시험을 수행하였다. 실험 결과 모재 지배적 물성에서 극심한 물성 저하현상이 나타남을 확인하였다. 구조물이 받는 하중의 다양성을 고려하기 위해서 반최적화 기법을 도입하였다. 하중 컨벡스 모델과 안정성 경계를 비교하여 최악의 하중 상황을 판별하였다. 안정성 경계는 일체형 복합재 연료탱크에 저하된 물성을 적용하여 유한요소 해석을 수행하여 얻었다. 이를 통해 최악의 하중상황은 수직상승모드일 때 임을 확인하였다.

Keywords

References

  1. T. A. Collings and D. E. W. Stone, 'Hygrothermal Effects in CFRP laminates_Strains Induced by Temperature and Moisture,' Composites, Vol. 16, No. 4, 1985, pp. 307-316 https://doi.org/10.1016/0010-4361(85)90283-6
  2. O. K. Joishi, 'The Effect of Moisture on the Shear Properties of Carbon Fibre Composites,' Composites, Vol. 14, No 3, 1983, pp. 196-200 https://doi.org/10.1016/0010-4361(83)90005-8
  3. L. E. Asp, 'The Effects of Moisture and Temperature on the Interlaminar Delamination Toughness of a Carbon/epoxy Composite,' Composites Science and Technology, Vol. 58, 1998, pp. 967-977 https://doi.org/10.1016/S0266-3538(97)00222-4
  4. J. Zhou and J. P. Lucas, 'Hygrothermal Effects of Epoxy Resin. Part I: the Nature of Water in Epoxy,' Polymer, Vol. 40, No. 20, 1999, pp. 5505-5512 https://doi.org/10.1016/S0032-3861(98)00790-3
  5. S. Birger, A. Moshonov and S. Kenig, 'The Effects of Thermal and Hygrothermal Ageing on the Failure Mechanisms of Graphite-fabric Epoxy Composites Subjected to Flexural Loading,' Composites, Vol. 20, No. 4, 1989, pp. 341-348 https://doi.org/10.1016/0010-4361(89)90659-9
  6. A.Bergeret, I. Pires, M.P. Foulc, B. Abadie, L. Ferry and A. Crespy, 'The Hygrothermal behaviour of Glass-fiber-reinforced Thermoplastic Composite: a Prediction of the Composite Lifetime,' Polymer Testing, Vol. 20, 2001, pp. 753-763 https://doi.org/10.1016/S0142-9418(01)00030-7
  7. M. H. Han and J. A. Nairn, 'Hygrothermal aging of polymide matrix composite laminates,' Composites, Vol. 34, 2003, pp. 979-986 https://doi.org/10.1016/S1359-835X(03)00154-4
  8. Y. Z. Wan, Y. L. Wang, Y. Huang, B. M. He and K. Y. Han, 'Hygrothermal Aging Behaviour of VARTMed Three-dimensional Braided Carbon-epoxy Composites under External Stresses,' Composites, Vol. 36, No. 11, 2005, pp. 1102-1109 https://doi.org/10.1016/j.compositesa.2005.01.003
  9. K. B. Shin, 'Characterization and Lifetime Prediction of Composite Materials under Ground and Space Environments,' KAIST, Doctor's Thesis, 2000
  10. I. Elishakoff and J. Fang, 'Diagnosis of Local Uncertain Modifications in the Boundary Conditions of a Rectangular Plate Via Convex Modeling,' Computer Methods in Applied Mechanics and Engineering, Vol. 124, 1995, pp. 303-319 https://doi.org/10.1016/0045-7825(94)00752-9
  11. A. R. Faria, 'Buckling Optimization and Antioptimization of Composite Plates: Uncertain Loading Combinations,' Numerical Methods in Engineering, Vol. 53, 2002, pp. 719-732 https://doi.org/10.1002/nme.309
  12. M. K. Yi, 'Optimal Design of Composite Laminated Stiffened Structures using Micro Genetic Algorithm,' KAIST, Master's Thesis, 2006
  13. S. Adali, F. Lene, G. Duvaut and V. Chiaruttini, 'Optimization of Laminated Composites Subject to Uncertain Buckling Loads,' Composite Structures, Vol. 62, 2003, pp. 261-269 https://doi.org/10.1016/j.compstruct.2003.09.024