• Title/Summary/Keyword: Var Model

Search Result 384, Processing Time 0.025 seconds

Usefulness and Limitations of Extreme Value Theory VAR model : The Korean Stock Market (극한치이론을 이용한 VAR 추정치의 유용성과 한계 - 우리나라 주식시장을 중심으로 -)

  • Kim, Kyu-Hyong;Lee, Joon-Haeng
    • The Korean Journal of Financial Management
    • /
    • v.22 no.1
    • /
    • pp.119-146
    • /
    • 2005
  • This study applies extreme value theory to get extreme value-VAR for Korean Stock market and showed the usefulness of the approach. Block maxima model and POT model were used as extreme value models and tested which model was more appropriate through back testing. It was shown that the block maxima model was unstable as the variation of the estimate was very large depending on the confidence level and the magnitude of the estimates depended largely on the block size. This shows that block maxima model was not appropriate for Korean Stock market. On the other hand POT model was relatively stable even though extreme value VAR depended on the selection of the critical value. Back test also showed VAR showed a better result than delta VAR above 97.5% confidence level. POT model performs better the higher the confidence level, which suggests that POT model is useful as a risk management tool especially for VAR estimates with a confidence level higher than 99%. This study picks up the right tail and left tail of the return distribution and estimates the EVT-VAR for each, which reflects the asymmetry of the return distribution of the Korean Stock market.

  • PDF

A Comparison Analysis of Monetary Policy Effect Under an Open Economy Model

  • Lee, Keun Yeong
    • East Asian Economic Review
    • /
    • v.22 no.2
    • /
    • pp.141-176
    • /
    • 2018
  • The paper analyzes and compares the effects of domestic monetary policy using DSGE, DSGE-VAR, and VAR based on a two-country open economy model of Korea and the U.S. According to impulse response analysis, a domestic interest rate hike raises won value in the case of DSGE and DSGE-VAR models, while in the case of the unrestricted VAR model, it lowers won value. In the marginal data density standard, DSGE-VAR (${\mu}=1$) is superior to DSGE or Bayesian VAR over the sample period. Conversely, in the in-sample RMSE criterion, especially for the won/dollar exchange rate, VARs are superior to DSGE or DSGE-VAR. It is necessary to study further if these differences are caused by model misspecification or omitted variable bias.

Analysis and Prediction of the Fiberboard Demand using VAR Model (VAR 모형에 의한 섬유판 수요 분석 및 예측)

  • Kim, Dongjun
    • Journal of Korean Society of Forest Science
    • /
    • v.98 no.3
    • /
    • pp.284-289
    • /
    • 2009
  • This study estimated the fiberboard demand using VAR and econometric model, and compared the prediction accuracy of the two models. And the variance decomposition and impulse response were analyzed using VAR model, and predicted the fiberboard demand. The VAR model was specified with lagged dependent variable, lagged own price, lagged construction product, dummy. The econometric model was specified with own price, substitute price, construction product, dummy. The dummy variable reflected the abrupt decrease in fiberboard demand in the late 1990's. The results showed that the fiberboard demand prediction can be performed more accurately by VAR model than by econometric model. In the VAR model of fiberboard demand, after twelve months, the construction product change accounts for about fifty percent of variation in the demand, and the own price change accounts for about thirty percent of variation in the demand. On the other hand, the impact of a shock to the construction product is significant for about twelve months on the demand of fiberboard, and the impact of a shock to the own price is significant for about six months on the demand of fiberboard.

Variational Data Assimilation for Optimal Initial Conditions in Air Quality Modeling

  • Park, Seon-Ki
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.19 no.E2
    • /
    • pp.75-81
    • /
    • 2003
  • Variational data assimilation, which is recently introduced to the air quality modeling, is a promising tool for obtaining optimal estimates of initial conditions and other important parameters such as emission and deposition rates. In this paper. two advanced techniques for variational data assimilation, based on the adjoint and quasi-inverse methods, are tested for a simple air quality problem. The four-dimensional variational assimilation (4D-Var) requires to run an adjoint model to provide the gradient information in an iterative minimization process, whereas the inverse 3D-Var (I3D-Var) seeks for optimal initial conditions directly by running a quasi -inverse model. For a process with small dissipation, I3D-Vu outperforms 4D-Var in both computing time and accuracy. Hybrid application which combines I3D-Var and standard 4D-Var is also suggested for efficient data assimilation in air quality problems.

Prediction of the interest spread using VAR model (벡터자기회귀모형에 의한 금리스프레드의 예측)

  • Kim, Junhong;Jin, Dalae;Lee, Jisun;Kim, Suji;Son, Young Sook
    • Journal of the Korean Data and Information Science Society
    • /
    • v.23 no.6
    • /
    • pp.1093-1102
    • /
    • 2012
  • In this paper, we predicted the interest spread using the VAR (vector autoregressive) model. Variables used in the VAR model were selected among 56 domestic and foreign macroeconomic time series through crosscorrelation and Granger causality test. The performance of the VAR model was compared with the univariate time series model, AR (autoregressive) model, in view of MAPE (mean absolute percentage error) and RMSE (root mean square error) of forecasts for the last twelve months.

Macroeconomic Determinants of Housing Prices in Korea VAR and LSTM Forecast Comparative Analysis During Pandemic of COVID-19

  • Starchenko, Maria;Jangsoon Kim;Namhyuk Ham;Jae-Jun Kim
    • Korean Journal of Construction Engineering and Management
    • /
    • v.25 no.4
    • /
    • pp.53-65
    • /
    • 2024
  • During COVID-19 the housing market in Korea experienced the soaring prices, despite the decrease in the economic growth rate. This paper aims to analyze macroeconomic determinants affecting housing prices in Korea during the pandemic and find an appropriate statistic model to forecast the changes in housing prices in Korea. First, an appropriate lag for the model using Akaike information criterion was found. After the macroeconomic factors were checked if they possess the unit root, the dependencies in the model were analyzed using vector autoregression (VAR) model. As for the prediction, the VAR model was used and, besides, compared afterwards with the long short-term memory (LSTM) model. CPI, mortgage rate, IIP at lag 1 and federal funds effective rate at lag 1 and 2 were found to be significant for housing prices. In addition, the prediction performance of the LSTM model appeared to be more accurate in comparison with the VAR model. The results of the analysis play an essential role in policymaker perception when making decisions related to managing potential housing risks arose during crises. It is essential to take into considerations macroeconomic factors besides the taxes and housing policy amendments and use an appropriate model for prices forecast.

Analysis of Price Forecasting and Goodness-of-Fit of the Metals Extracted from Deep Seabed Manganese Nodules (심해저 망간단괴에서 추출되는 금속가격 예측 및 적합도 분석)

  • Kwon, Suk-Jae;Jeong, Sun-Young
    • Ocean and Polar Research
    • /
    • v.36 no.4
    • /
    • pp.505-514
    • /
    • 2014
  • The development of deep seabed manganese nodules has been carried out with the aim of commercial development in 2023. It is important to forecast the price of the four metals (copper, nickel, cobalt, and manganese) extracted from manganese nodules because price change is a criterion for investment decision. The main purpose of the study is to forecast the price of four metals using the ARIMA model and VAR model, and calculate the MAPE to compare a goodness-of-fit between the two models. The estimated results of the two models reveal statistical significance and are in keeping with economic theory. The results of MAPE for goodness-of-fit show that the VAR model is between 0.1 and 0.2, and the ARIMA model is between 0.4 and 0.6. That is, the VAR model is better than the ARIMA model in forecasting changes in the price of metals.

A development of stochastic simulation model based on vector autoregressive model (VAR) for groundwater and river water stages (벡터자기회귀(VAR) 모형을 이용한 지하수위와 하천수위의 추계학적 모의기법 개발)

  • Kwon, Yoon Jeong;Won, Chang-Hee;Choi, Byoung-Han;Kwon, Hyun-Han
    • Journal of Korea Water Resources Association
    • /
    • v.55 no.12
    • /
    • pp.1137-1147
    • /
    • 2022
  • River and groundwater stages are the main elements in the hydrologic cycle. They are spatially correlated and can be used to evaluate hydrological and agricultural drought. Stochastic simulation is often performed independently on hydrological variables that are spatiotemporally correlated. In this setting, interdependency across mutual variables may not be maintained. This study proposes the Bayesian vector autoregression model (VAR) to capture the interdependency between multiple variables over time. VAR models systematically consider the lagged stages of each variable and the lagged values of the other variables. Further, an autoregressive model (AR) was built and compared with the VAR model. It was confirmed that the VAR model was more effective in reproducing observed interdependency (or cross-correlation) between river and ground stages, while the AR generally underestimated that of the observed.

The sparse vector autoregressive model for PM10 in Korea (희박 벡터자기상관회귀 모형을 이용한 한국의 미세먼지 분석)

  • Lee, Wonseok;Baek, Changryong
    • Journal of the Korean Data and Information Science Society
    • /
    • v.25 no.4
    • /
    • pp.807-817
    • /
    • 2014
  • This paper considers multivariate time series modelling of PM10 data in Korea collected from 2008 to 2011. We consider both temporal and spatial dependencies of PM10 by applying the sparse vector autoregressive (sVAR) modelling proposed by Davis et al. (2013). It utilizes the partial spectral coherence to measure cross correlation between different regions, in turn provides the sparsity in the model while balancing the parsimony of model and the goodness of fit. It is also shown that sVAR performs better than usual vector autoregressive model (VAR) in forecasting.

A Study on Demand Forecasting of Export Goods Based on Vector Autoregressive Model : Subject to Each Small Passenger Vehicles Quarterly Exported to USA (VAR모형을 이용한 수출상품 수요예측에 관한 연구: 소형 승용차 모델별 분기별 대미수출을 중심으로)

  • Cho, Jung-Hyeong
    • International Commerce and Information Review
    • /
    • v.16 no.3
    • /
    • pp.73-96
    • /
    • 2014
  • The purpose of this research is to evaluate a short-term export demand forecasting model reflecting individual passenger vehicle brands and market characteristics by using Vector Autoregressive (VAR) models that are based on multivariate time-series model. The short-term export demand forecasting model was created by discerning theoretical potential factors that affect the short-term export demand of individual passenger vehicle brands. Quarterly short-term export demand forecasting model for two Korean small vehicle brands (Accent and Avante) were created by using VAR model. Predictive value at t+1 quarter calculated with the forecasting models for each passenger vehicle brand and the actual amount of sales were compared and evaluated by altering subject period by one quarter. As a result, RMSE % of Accent and Avante was 4.3% and 20.0% respectively. They amount to 3.9 days for Accent and 18.4 days for Avante when calculated per daily sales amount. This shows that the short-term export demand forecasting model of this research is highly usable in terms of prediction and consistency.

  • PDF