• Title/Summary/Keyword: Vapor line

Search Result 137, Processing Time 0.027 seconds

ILD CMP 공정에서 실리콘 산화막의 기계적 성질이 Scratch 발생에 미치는 영향

  • Jo, Byeong-Jun;Gwon, Tae-Yeong;Kim, Hyeok-Min;Park, Jin-Gu
    • Proceedings of the Materials Research Society of Korea Conference
    • /
    • 2011.10a
    • /
    • pp.23-23
    • /
    • 2011
  • Chemical-Mechanical Planarization (CMP) 공정이란 화학적 반응 및 기계적인 힘이 복합적으로 작용하여 표면을 평탄화하는 공정이다. 이러한 CMP 공정은 반도체 산업에서 회로의 고집적화와 다층구조를 형성하기 위하여 도입되었으며 반도체 제조를 위한 필수공정으로 그 중요성이 강조되고 있다. 특히 최근에는 Inter-Level Dielectric (ILD)의 형성과 Shallow Trench Isolation (STI) 공정에서실리콘 산화막을 평탄화하기 위한 CMP 공정에 대해 연구가 활발히 이루어지고 있다. 그러나 CMP 공정 후 scratch, pitting corrosion, contamination 등의 Defect가 발생하는 문제점이 존재한다. 이 중에서도 scratch는 기계적, 열적 스트레스에 의해 생성된 패드의 잔해, 슬러리의 잔유물, 응집된 입자 등에 의해 표면에 형성된다. 반도체 공정에서는 다양한 종류의 실리콘 산화막이 사용되고 gks이러한 실리콘 산화막들은 종류에 따라 경도가 다르다. 따라서 실리콘 산화막의 경도에 따른 CMP 공정 및 이로 인한 Scratch 발생에 관한 연구가 필요하다고 할 수 있다. 본 연구에서는 scratch 형성의 거동을 알아보기 위하여 boronphoshposilicate glass (BPSG), plasma enhanced chemical vapor deposition (PECVD) tetraethylorthosilicate (TEOS), high density plasma (HDP) oxide의 3가지 실리콘 산화막의 기계적 성질 및 이에 따른 CMP 공정에 대한 평가를 실시하였다. CMP 공정 후 효율적인 scratch 평가를 위해 브러시를 이용하여 1차 세정을 실시하였으며 습식세정방법(SC-1, DHF)으로 마무리 하였다. Scratch 개수는 Particle counter (Surfscan6200, KLA Tencor, USA)로 측정하였고, 광학현미경을 이용하여 형태를 관찰하였다. Scratch 평가를 위한 CMP 공정은 실험에 사용된 3가지 종류의 실리콘 산화막들의 경도가 서로 다르기 때문에 동등한 실험조건 설정을 위해 동일한 연마량이 관찰되는 조건에서 실시하였다. 실험결과 scratch 종류는 그 형태에 따라 chatter/line/rolling type의 3가지로 분류되었다 BPSG가 다른 종류의 실리콘 산화막에 비해 많은 수에 scratch가 관찰되었으며 line type이 많은 비율을 차지한다는 것을 확인하였다. 또한 CMP 공정에서 압력이 증가함에 따라 chatter type scratch의 길이는 짧아지고 폭이 넓어지는 것을 확인하였다. 본 연구를 통해 실리콘 산화막의 경도에 따른 scratch 형성 원리를 파악하였다.

  • PDF

High Quality Nickel Atomic Layer Deposition for Nanoscale Contact Applications

  • Kim, Woo-Hee;Lee, Han-Bo-Ram;Heo, Kwang;Hong, Seung-Hun;Kim, Hyung-Jun
    • Proceedings of the Materials Research Society of Korea Conference
    • /
    • 2009.05a
    • /
    • pp.22.2-22.2
    • /
    • 2009
  • Currently, metal silicides become increasingly more essential part as a contact material in complimentary metal-oxide-semiconductor (CMOS). Among various silicides, NiSi has several advantages such as low resistivity against narrow line width and low Si consumption. Generally, metal silicides are formed through physical vapor deposition (PVD) of metal film, followed by annealing. Nanoscale devices require formation of contact in the inside of deep contact holes, especially for memory device. However, PVD may suffer from poor conformality in deep contact holes. Therefore, Atomic layer deposition (ALD) can be a promising method since it can produce thin films with excellent conformality and atomic scale thickness controllability through the self-saturated surface reaction. In this study, Ni thin films were deposited by thermal ALD using bis(dimethylamino-2-methyl-2-butoxo)nickel [Ni(dmamb)2] as a precursor and NH3 gas as a reactant. The Ni ALD produced pure metallic Ni films with low resistivity of 25 $\mu{\Omega}cm$. In addition, it showed the excellent conformality in nanoscale contact holes as well as on Si nanowires. Meanwhile, the Ni ALD was applied to area-selective ALD using octadecyltrichlorosilane (OTS) self-assembled monolayer as a blocking layer. Due to the differences of the nucleation on OTS modified surfaces toward ALD reaction, ALD Ni films were selectively deposited on un-coated OTS region, producing 3 ${\mu}m$-width Ni line patterns without expensive patterning process.

  • PDF

Characteristics of Brightness Temperature of Geostationary Satellite on Lightning Events during Summer over South Korea (여름철 낙뢰 발생 시 정지궤도 위성의 휘도온도 특성)

  • Lee, Yun-Jeong;Suh, Myoung-Seok;Eom, Hyo-Sik;Seo, Eun-Kyoung
    • Journal of the Korean earth science society
    • /
    • v.30 no.6
    • /
    • pp.744-758
    • /
    • 2009
  • The characteristics of brightness temperature (BT) of infrared and water vapor channels from MTSAT-1R have been investigated using 12 persistent and frequent lightning cases selected from the summer lightnings of 2006-2008. The infrared (IR1, 10.3-11.3 ${\mu}M$) and water vapor (WV, 6.5-7.0 ${\mu}M$) channels from the MTSAT-1R and the lightning observation data from Korea Meteorological Administration are used. When there is no lightning, the BTs of the IR1 and WV channels show the largest frequency at around 290-295K and 245K, respectively. On the other hand, the BTs of two channels show the largest frequency at 215K caused by strong convection when there is lightning. As a result, the WV-IR1 difference (BTDWI) sharply increases from -50K to 0K. Although it depends on the evolution stage of thunderstorms, the lightning mainly occurs at the core of circular convection in the mesoscale convective complex (MCC), whereas the lightning occurs by concentrated line-shape in the squall line. A strong positive correlation exists between the lightning frequency and the BT in the MCC regardless of the BT, but only at the very cold BT in the squall line. In general, the characteristics of BT are well defined for the lightning occurring in the concentrated line, but they are not well defined in the MCC, especially during the decaying stage of MCC. When they are defined well, the lightning occurs when the BTs of IR1 and WV are lower than 215K, BTDWI is near -3 to 1K, and local standard deviation of IR1 decreases to around 1K.

SAW Filter Made of ZnO/Nanocrystalline Diamond Thin Films (ZnO/나노결정다이아몬드 적층 박막 SAW 필터)

  • Jung, Doo-Young;Kang, Chan-Hyoung
    • Journal of the Korean institute of surface engineering
    • /
    • v.42 no.5
    • /
    • pp.216-219
    • /
    • 2009
  • A surface acoustic wave (SAW) filter structure was fabricated employing $4{\mu}m$ thick nanocrystalline diamond (NCD) and $2.2{\mu}m$ thick ZnO films on Si wafer. The NCD film was deposited in an $Ar/CH_4$ gas mixture by microwave plasma chemical vapor deposition method. The ZnO film was formed over the NCD film in an RF magnetron sputter using ZnO target and $Ar/O_2$ gas. On the top of the two layers, copper film was deposited by the RF sputter and inter digital transducer (IDT) electrode pattern (line/space : $1.5/1.5{\mu}m$) was defined by the photolithography including a lift-off etching process. The fabricated SAW filter exhibited the center frequency of 1.66 GHz and the phase velocity of 9,960 m/s, which demonstrated that a giga Hertz SAW filter can be realized by utilizing the nanocrystalline diamond thin film.

Development of Multiscale Simulation Technique for Multiphase Fluid System (다상 유체 시스템의 다중 스케일 시뮬레이션 기법에 관한 연구)

  • Han, Min-Sub
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.34 no.6
    • /
    • pp.569-577
    • /
    • 2010
  • A multiscale particle simulation technique that can be applied to a multiphase fluid system has been developed. In the boundary region where the macroscopic- and microscopic-scale models overlap each other, three distinctive features are introduced in the simulation. First, a wall is set up between the gas and liquid phases to separate them and match the phases respectively to the macroscopic conditions stably. Secondly, the interfacial profile is obtained near the matching region and the wall translates and rotates to accommodate the change in the liquid-vapor interfacial position in the molecular model. The contact angle thus obtained can be sent to the macroscopic model. Finally, a state of mass and temperature in the region is maintained by inserting and deleting the particles. Good matching results are observed in the cases of the complete and partial wetting fluid systems.

Calibration Methods for the Gas Chromatographic Analysis of ppt-level Hydrogen Sulfide (H2) in Air (환경 대기 중 ppt 수준의 황화수소 분석을 위한 GC 방식의 검량 기법에 대한 연구)

  • 김기현;오상인;최여진;최규훈;주도원
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.19 no.6
    • /
    • pp.679-687
    • /
    • 2003
  • In this study, we investigated the analytical techniques to quantify the ambient concentration of hydrogen sulfide (H$_2$S) in air at ppt concentration level. For this purpose, an on-line GC analytical system equipped with both pulsed-flame photometric detector (PFPD) and thermal desorption unit (TDU) was investigated by collecting ambient air samples. The results of our study generally indicated that calibration conditions of GC system is highly sensitive to affect the accuracy of the analytical technique. Most importantly. we found that the use of different matrices in the the preparation stage of working standards was sensitive to control the overall performance of this technique. The calibration of our analytical system was tested by the two types of working standard (prepared by mixing either with high purity $N_2$ or with the ambient air). According to this test, the latter represented more efficiently the detecting conditions of actual air samples. The peak occurrence patterns of both air samples and standards (prepared by mixing with ambient air) were altered in a similar manner as the function of the loaded volume; however, it was not the case for the $N_2$-mixed standards. Results of our study suggest that detection of H$_2$S is highly different from other sulfides and that its quantification requires minimiaing interfering effects of non -pure substance (like water vapor) and (either sorptive or destructive) loss effects.

Distribution between Air-Soil Concentration of Organochlorine Pesticides (유기염소계 살충제의 대기-토양간 분배)

  • Choi, Min-Kyu;Chun, Man-Young
    • Environmental Analysis Health and Toxicology
    • /
    • v.22 no.4
    • /
    • pp.299-304
    • /
    • 2007
  • This paper was studied to investigate the equilibrium state between organochlorine pesticides (OCPs) concentration of air and soil, and to know whether soil is a secondary pollution source of OCPs in air or not. The OCPs concentration of air ($C_{air}$) and soil ($C_{soil}$) is not related to molecular weight, vapor pressure ($P_L$) and octanol-air partition coefficient ($K_{oa}$). The slope of the regression line between soil-air partition coefficient ($K_{sa}$) and scavenging coefficient ($C_{soil}/C_{air}$) was 0.2952, which the OCPs concentration between air and soil did not reached to the equilibrium state. The soil/air fugacity quotients ($f_{soil}/f_{air}$) of p, p'-DDT/DDD/DDE and ${\beta}-HCH\;(0.30{\sim}0.67$), which is smaller than 1, means the deposit of OCPs from air to soil. However, $f_{soil}/f_{air}$ of heptachlor, heptachlor epoxide, ${\alpha}/{\gamma}-chlordane$, trans-nonachlor, endosulfan sulfate and ${\alpha}/{\gamma}-HCH\;(1.90{\sim}73.25)$, which is greater than 1, means that soil is secondary pollution source of OCPs in air.

2-Dimensional Visualization of the Flame Propagation in a Four-Valve Spark-Ignition Engine (가솔린엔진에서의 2차원 화염 가시화)

  • Bae, Choong-Sik
    • Journal of the Korean Society of Combustion
    • /
    • v.1 no.1
    • /
    • pp.65-73
    • /
    • 1996
  • Flame propagation in a four-valve spark-ignition optical engine was visualized under lean-bum conditions with A/F=18 at 2000rpm. The early flame development in a four-valve pentroof-chamber single-cylinder engine was examined with imaging of the laser-induced Mie scattered light using an image-intensified CCD camera. Flame profiles along the line-of-sight were also visualized through a quartz piston window. Two-dimensional flame structures were visualized with a Proxitronic HF-1 fast motion camera system by Mie scattering from titanium dioxide particles along a planar laser sheet generated by a copper vapor laser. The flame propagation images were subsequently analysed with an image processing programme to obtain information about the flame structure under different tumble flow conditions generated by sleeved and non-sleeved intake ports. This allowed enhancement of the flame images and calculation of the enflamed area, and the displacement of its center, as a function of the tumble flow induced by the pentroof-chamber in the vicinity of spark plug. Image processing of the early flame development quantified the correlation between flame and flow characteristics near the spark plug at the time of ignition which has been known to be one of the most important factors in cyclic combustion variations in lean-burn engines. The results were also compared with direct flame images obtained from the natural flame luminosity of the lean mixture.

  • PDF

A study on the $YBa_{2}Cu_{3}O_{x}$ phase deposition by liquid aerosol PECVD (미립액상 분말에 의한 $YBa_{2}Cu_{3}O_{x}$ 초전도체의 PECVD 증착법)

  • 정용선;오근호
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.6 no.2
    • /
    • pp.229-237
    • /
    • 1996
  • The superconducting phase, $YBa_{2}Cu_{3}O_{x}$ (YBCO), was in-situ deposited on the single crystal MgO substrates, using an aerosol decomposition process in a cold plasma reactor. The solubility and decomposition temperature of the chemical precursors, and the vapor pressures of the solvents, were determined to be the factors crucial to achieving a stoichiometric, crystalline YBCO phase. The deposition parameters for the YBCO phase were 0.3 to 2.7 kPa for the oxygen partial pressure and $800^{\circ}C$ to $940^{\circ}C$ for the substrate temperature. The optimum deposition conditions for the YBCO phase were observed along the CuO decomposition line.

  • PDF

Soft Lithographic Patterning Method for Flexible Graphene-based Chemical Sensors with Heaters

  • Kang, Min-a;Jung, Min Wook;Myung, Sung;Song, Wooseok;Lee, Sun Suk;Lim, Jongsun;Park, Chong-Yun;An, Ki-Seok
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2014.02a
    • /
    • pp.176.2-176.2
    • /
    • 2014
  • In this work, we demonstrated that the fabrication of flexible graphene-based chemical sensor with heaters by soft lithographic patterning method [1]. First, monolayer and multilayer graphene were prepared by thermal chemical vapor deposition transferred onto SiO2 / Si substrate in order to fabrication of patterned-sensor and -heater. Second, patterned-monolayer and multilayer graphene were detached through soft lithography process, which was transferred on top and bottom sides of PET film. Third, Au / Ti (Thickness : 100/30 nm) electrodes were deposited end of the patterned-graphene line by sputtering system. Finally, we measured sensor properties through injection of NO2 and CO2 gas on different temperature with voltage change of graphene heater.

  • PDF