We present a robust power transmission lines detection method based on vanishing point estimation. Vanishing point estimation can be helpful to detect power transmission lines because parallel lines converge on the vanishing point in a projected 2D image. However, it is not easy to estimate the vanishing point correctly in an image with complex background. Thus, we first propose a vanishing point estimation method on power transmission lines by using a probabilistic voting procedure based on intersection points of line segments. In images obtained by our system, power transmission lines are located in a fan-shaped area centered on this estimated vanishing point, and therefore we select the line segments that converge to the estimated vanishing point as candidate line segments for power transmission lines only in this fan-shaped area. Finally, we detect the power transmission lines from these candidate line segments. Experimental results show that the proposed method is robust to noise and efficient to detect power transmission lines.
In this paper, we present an algorithm that quickly and effectively estimates orthogonal vanishing points in equirectangular images of urban environment. Our algorithm is based on the RANSAC (RANdom SAmple Consensus) algorithm and on the characteristics of the line segment in the spherical panorama image of the $360^{\circ}$ longitude and $180^{\circ}$ latitude field of view. These characteristics can be used to reduce the geometric ambiguity in the line segment classification as well as to improve the robustness of vanishing point estimation. The proposed algorithm is validated experimentally on a wide set of images. The results show that our algorithm provides excellent levels of accuracy for the vanishing point estimation as well as line segment classification.
When a camera installed on a vehicle is used, estimation of the camera pose including tilt, roll, and pan angle with respect to the world coordinate system is important to associate camera coordinates with world coordinates. Previous approaches using huge calibration patterns have the disadvantage that the calibration patterns are costly to make and install. And, previous approaches exploiting multiple vanishing points detected in a single image are not suitable for automotive applications as a scene where multiple vanishing points can be captured by a front camera is hard to find in our daily environment. This paper proposes a camera pose estimation method. It collects multiple images of lane markings while changing the horizontal angle with respect to the markings. One vanishing point, the cross point of the left and right lane marking, is detected in each image, and vanishing line is estimated based on the detected vanishing points. Finally, camera pose is estimated from the vanishing line. The proposed method is based on the fact that planar motion does not change the vanishing line of the plane and the normal vector of the plane can be estimated by the vanishing line. Experiments with large and small tilt and roll angle show that the proposed method outputs accurate estimation results respectively. It is verified by checking the lane markings are up right in the bird's eye view image when the pan angle is compensated.
본 논문에서는 입력된 자연영상으로부터 도로 영역을 검출하기 위한 소실점 자동 예측 방법을 제안한다. 제안하는 방법에서는 도로 환경에서 안정적으로 소실점을 검출하기 위해 영상의 주방향성을 분석하여 영상 특징성분들이 집중되는 곳을 소실점으로 예측한다. 이를 위해 첫번째 단계에서는, 영상을 일정크기의 서브블록으로 분할하고 분할된 서브블록 내에서 임의의 에지 샘플을 선택하고 RANSAC을 적용하여 직선 모델을 예측함으로서 각 서브블록의 주방향성을 분석한다. 모든 블록에 대하여 주방향성을 검출한 후, 두 번째 단계에서 임의의 직선 샘플을 선택하고 RANSAC을 적용하여 교점 모델을 예측함으로서 각 직선들로 인한 교점 모델의 비용값을 측정하고 가장 높은 비용값의 교점 모델에 의한 평균점으로 소실점을 예측한다. 마지막으로 성능 검증을 위해 다양한 상황에 따른 정량적, 정성적 분석을 통해 제안하는 소실점 검출 알고리즘의 타당성과 효율성을 입증한다.
본 논문에서는 움직임 객체 검출 기법의 성능을 향상시키기 위하여 소실점과 움직임 객체간의 거리를 추정하는 기법을 제안한다. 이를 위하여 먼저, 주어진 입력 영상에 대하여 하프변환을 이용하여 소실점을 추정하고, 이를 바탕으로 소실점과 움직임 객체간의 거리를 추출한다. 얻어진 거리 정보는 움직임 객체 추출에 효과적으로 사용된다. 모의실험에서 제안된 기법에 대한 모의실험 결과를 제시하였으며, 객체단위의 거리추정을 객체 추정에 활용할 수 있음 확인할 수 있었다.
Camera Calibration should certain)y be achieved to take an accurate measurement using image system. Calibration is to prove the relation between an measurement object and camera and to estimate twelve internal and external parameters. In this paper, we suggest that an algorithm should estimate the external parameters from the road image and use a vanishing point's character from parallel straight lines in a space. also, we use Hough Transform to estimate an accurate vanishing point. Hough Transform has one of the advantages which is an application for each road environment. we assume a variety of environments to prove the usability of a suggested algorithm and show simulation results with a computer.
소실점(vanishing point)이란 카메라 렌즈를 통해 3차원 공간을 2차원 영상으로 투영하는 과정에서 평행한 직선들이 수렴하는 점을 의미한다. 소실점 검출은 영상 내의 정보를 이용하여 소실점의 위치를 파악하는 것을 의미하며, 영상 내 지점들의 상대적인 거리를 파악하거나 장면 전체의 3차원 구조를 파악하는데 활용된다. 일반적으로 영상 내 평행한 직선들은 인공 구조물 내에 존재하는 경우가 많으므로 직선 검출 기반 소실점 검출 기법들은 인공 구조물 내의 직선들을 찾아 이들이 수렴하는 점을 소실점으로서 검출하는 것을 목표로 한다. 이 때, 영상 내에서 직선을 검출하기 위하여 먼저 에지 검출(edge detection)을 통해 에지 픽셀을 검출하고 그 결과를 허프 변환(Hough transform)하여 직선들을 찾아낸다. 그러나 각종 텍스쳐 및 노이즈 등 여러 원인들로 인해 위 과정에서 검출된 직선들이 모두 소실점을 지나지는 않는다. 따라서 검출된 직선들로부터 소실점을 정확히 검출하기 위해서는 각 직선에 대하여 소실점을 지날 가능성에 따라 다른 가중치를 부여하는 것이 필요한데 기존의 연구들은 가중치를 동일하게 부여하거나 단순한 수준의 가중치 계산을 적용해 왔다. 본 논문에서는 소실점을 지나는 직선들은 대부분 인공 구조물 내의 직선들임에 착안하여 직선에 가중치를 부여하는 새로운 방법을 제안하고 이를 이용한 소실점 검출 결과를 몇 가지 기존 방법들과 비교하였다. 그 결과, 기존 방법들에 비하여 소실점 추정 오류가 약 65% 감소하였다.
본 논문에서는 단일 카메라를 이용하여 영상 내에 존재하는 객체의 3차원 공간 상에서의 위치 및 높이를 추출하기 위한 기법을 제안한다. 본 논문에서 제안하는 방법은 영상으로 사영된 3차원 장면(scene)에 대한 기준 좌표계를 마커(marker)를 이용해서 설정한 다음, 대상 물체의 2차원 영상을 기준 좌표계로 직접 역사영(back-projection) 시킴으로써 대상 물체에 대한 3차원 공간에서의 위치 및 높이를 계산한다. 그리고 부정확한 카메라 교정으로 인하여 발생하는 역사영 오차를 마커의 기하학 정보를 이용해서 보정한다. 제안된 방법은 기존의 방법에서 주로 이용되던 소실점(vanishing point) 및 소실선(vanishing line) 등을 이용하지 않으며, 3차원 공간 내에서의 객체의 높이 및 위치의 동시 추정이 가능한 장점이 있다. 또한 단일 카메라만을 이용하여 필요한 위치 및 높이 정보를 추출하기 때문에 다중 카메라를 이용한 기법에서 발생할 수 있는 3차원 좌표계 상에서의 대응점의 모호성, 다수의 카메라를 정확히 교정시켜야 하는 어려움 등의 문제가 발생하지 않는다. 실험 결과를 통하여 제안된 기법의 정확도 및 안정성을 확인하였다.
This paper describes the algorithm which can estimate road following direction and deetect obstacle using a monocular vision system. This algorithm can estimate the course of vehicle using the vanishing point properties and detect obstacle by statistical method. The proposed algorithm is composed of four steps, which are lane prediction, lane extraction, road following parameter estimation and obstacle detection. It is designed for high processing speed and high accuracy. The former is achieved by a small area named sub-windown in lane existence area, the later is realized by using connected edge points of lane. We would like to present that the new mehod can detect obstacle using the simple statistical method. The paracticalities of the processing speed, the accuracy of the algorithm and proposing obstacle detection method, have been justified through the experiment applied VTR image of the real road to the algorithm.
This paper describes position estimation algorithm using neural network for the navigation of the vision-based wheeled mobile robot (WMR) in a corridor with taking ceiling lamps as landmark. From images of a corridor the lamp's line on the ceiling in corridor has a specific slope to the lateral position of the WMR. The vanishing point produced by the lamp's line also has a specific position to the orientation of WMR. The ceiling lamps have a limited size and shape like a circle in image. Simple image processing algorithms are used to extract lamps from the corridor image. Then the lamp's line and vanishing point's position are defined and calculated at known position of WMR in a corridor. To estimate the lateral position and orientation of WMR from an image, the relationship between the position of WMR and the features of ceiling lamps have to be defined. But it is hard because of nonlinearity. Therefore, data set between position of WMR and features of lamps are configured. Neural network are composed and learned with data set. Back propagation algorithm(BPN) is used for learning. And it is applied in navigation of WMR in a corridor.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.