Abstract
This paper proposes a method of automatically predicting the vanishing point for the purpose of detecting the road region from natural images. The proposed method stably detects the vanishing point in the road environment by analyzing the dominant orientation of the image and predicting the vanishing point to be at the position where the feature components of the image are concentrated. For this purpose, in the first stage, the image is partitioned into sub-blocks, an edge sample is selected randomly from within the sub-block, and RANSAC is applied for line fitting in order to analyze the dominant orientation of each sub-block. Once the dominant orientation has been detected for all blocks, we proceed to the second stage and randomly select line samples and apply RANSAC to perform the fitting of the intersection point, then measure the cost of the intersection model arising from each line and we predict the vanishing point to be located at the average point, based on the intersection point model with the highest cost. Lastly, quantitative and qualitative analyses are performed to verify the performance in various situations and prove the efficiency of the proposed algorithm for detecting the vanishing point.
본 논문에서는 입력된 자연영상으로부터 도로 영역을 검출하기 위한 소실점 자동 예측 방법을 제안한다. 제안하는 방법에서는 도로 환경에서 안정적으로 소실점을 검출하기 위해 영상의 주방향성을 분석하여 영상 특징성분들이 집중되는 곳을 소실점으로 예측한다. 이를 위해 첫번째 단계에서는, 영상을 일정크기의 서브블록으로 분할하고 분할된 서브블록 내에서 임의의 에지 샘플을 선택하고 RANSAC을 적용하여 직선 모델을 예측함으로서 각 서브블록의 주방향성을 분석한다. 모든 블록에 대하여 주방향성을 검출한 후, 두 번째 단계에서 임의의 직선 샘플을 선택하고 RANSAC을 적용하여 교점 모델을 예측함으로서 각 직선들로 인한 교점 모델의 비용값을 측정하고 가장 높은 비용값의 교점 모델에 의한 평균점으로 소실점을 예측한다. 마지막으로 성능 검증을 위해 다양한 상황에 따른 정량적, 정성적 분석을 통해 제안하는 소실점 검출 알고리즘의 타당성과 효율성을 입증한다.