• Title/Summary/Keyword: Valve noise

Search Result 274, Processing Time 0.03 seconds

Performance Evaluation of a Piezostack Single-stage Valve at High Temperatures (고온 환경에서의 압전작동기를 이용한 1단 밸브의 성능 평가)

  • Han, Chulhee;Kim, Wan Ho;Choi, Seung-Bok
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.27 no.2
    • /
    • pp.168-174
    • /
    • 2017
  • In this work, a piezostack single-stage valve (PSSV) system is proposed and its control performance is experimentally evaluated at high temperature up to $150^{\circ}C$. In order to achieve this goal, a PSSV system is designed and operating principle and mechanical dimensions are discussed. A displacement amplifier and an adjust bolt are used to generate target displacement and to compensate thermal expansion. Then, an experimental apparatus is constructed to evaluate control performance of the PSSV system. The experimental apparatus consists of a heat chamber, a hydraulic circuit, a pneumatic circuit, pneumatic-hydraulic cylinders, thermal insulator, electronic devices, sensors, data acquisition (DAQ) board and a voltage amplifier. The flow rate and displacement control performance of the valve system are evaluated via experiment. The experimental results are evaluated and discussed at different temperatures and frequencies showing the controlled flow rate and spool displacement.

Study on the Dynamic Behavior of Suction and Discharge Valves in Reciprocating Compressor (왕복동식 압축기 흡입 및 토출밸브의 동적 거동 고찰)

  • 김성원;박정희
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 1998.04a
    • /
    • pp.136-142
    • /
    • 1998
  • Despite the fact that vibration and noise of suction and discharge valves are important factors to be considered in reciprocating compressor designs, such are still have many problems to be developed. Subsequently, this paper addresses a thorough investigation to retrieve basic data for designing suction and discharge valve. In achieving this goal, the natural frequencies in suction and discharge valve were calculated using finite elements method and compared with the results of experimental method which is driven by the speaker and detected by the Laser Velocity Transducer. Also, it was found that natural frequencies are much affected by the Young's Modulus at the clamp. Therefore, improved experimental setup is suggested to consider the effect of clamping conditions. Consequently improved experimental data have good agreements with the FEM data.

  • PDF

A Study of Noise Improvement of variable displascement swash plate type compressor with internal control valve (내부제어밸브를 가진 가변 사판식 압축기의 소음개선에 관한 연구)

  • Han, Gyu-Suk;Rho, Gyoung-Deok;Kong, Moon-Seong
    • 유체기계공업학회:학술대회논문집
    • /
    • 2006.08a
    • /
    • pp.165-168
    • /
    • 2006
  • Due to the distinct advantages of comfort, drive ability and fuel economy standard, the variable displacement swash plate type compressor which can control the compressor displacement by increasing of reducing the swash plate angle has developed for automotive air-conditioning system. That can be obtained constant temperature of car room on the variation cooling capacities of engine speeds. In this paper we investigated the improvement of internally controlled variable displacement swash plate compressor on noise.

  • PDF

An Experimental Study on the Development of Muffler with Cotroller Sensing Exhaust-gas Pressure in Exhaust System (배기계의 배기압 감응형 제어 머플러 개발에 관한 실험적 연구)

  • Lee, Hae-Chul;Seog, Dong-Hyun;Lee, Joon-Seo;Cha, Kyung-Ok
    • Proceedings of the KSME Conference
    • /
    • 2000.04b
    • /
    • pp.892-898
    • /
    • 2000
  • This study is on the development of a new muffler composed of a valve system using an elasticity or spring. The valve system using the elasticity of spring is set along the exhaust-gas flow and designed to work itself alone the driving condition of a engine. By that reason the engine capacity is so enlarged that a muffler with controller sensing exhaust-gas pressure is able to be satisfied to noise reduction and- power enlargement more than conventional muffler. The purpose of this study is to develope the new muffler which has more noise reduction and power enlargement than conventional muffler and electric-control muffler.

  • PDF

Valve Modeling and Model Extraction on 3D Point Cloud data (잡음이 있는 3차원 점군 데이터에서 밸브 모델링 및 모델 추출)

  • Oh, Ki Won;Choi, Kang Sun
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.52 no.12
    • /
    • pp.77-86
    • /
    • 2015
  • It is difficult to extract small valve automatically in noisy 3D point cloud obtained from LIDAR because small object is affected by noise considerably. In this paper, we assume that the valve is a complex model consisting of torus, cylinder and plane represents handle, rib and center plane to extract a pose of the valve. And to extract the pose, we received additional input: center of the valve. We generated histogram of distance between the center and each points of point cloud, and obtain pose of valve by extracting parameters of handle, rib and center plane. Finally, the valve is reconstructed.

Modification of acceleration signal to improve classification performance of valve defects in a linear compressor

  • Kim, Yeon-Woo;Jeong, Wei-Bong
    • Smart Structures and Systems
    • /
    • v.23 no.1
    • /
    • pp.71-79
    • /
    • 2019
  • In general, it may be advantageous to measure the pressure pulsation near a valve to detect a valve defect in a linear compressor. However, the acceleration signals are more advantageous for rapid classification in a mass-production line. This paper deals with the performance improvement of fault classification using only the compressor-shell acceleration signal based on the relation between the refrigerant pressure pulsation and the shell acceleration of the compressor. A transfer function was estimated experimentally to take into account the signal noise ratio between the pressure pulsation of the refrigerant in the suction pipe and the shell acceleration. The shell acceleration signal of the compressor was modified using this transfer function to improve the defect classification performance. The defect classification of the modified signal was evaluated in the acceleration signal in the frequency domain using Fisher's discriminant ratio (FDR). The defect classification method was validated by experimental data. By using the method presented, the classification of valve defects can be performed rapidly and efficiently during mass production.

In-Situ Application Study on the Power Plant Valve Leak Diagnosis Using Acoustic Emission Technology (음향방출을 이용한 발전용 밸브 누설 진단 현장 적용 연구)

  • Lee, Sang-Guk
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.28 no.4
    • /
    • pp.315-322
    • /
    • 2008
  • Valves in power plants are leaking internally by various damages including insertion of foreign objects on seat, seat crack, defects and fatigue crack of stem packing or welds etc. due to severe operating conditions such as high temperature and high pressure for extended period time. Acoustic emission(AE) technology should be applied in order to diagnose precisely and evaluate these valve internal leak. In this paper, results of studies which have accomplished in actual power plant are presented. We have analyzed background noise, AE signal level and frequency spectrum through laboratory tests on the basis of various actual conditions in power plant, and also have considered evaluation methods on the background noise, AE properties and the detectable minimum leak rate according to valve leak conditions through comparing with results of field tests in power plant. As a result of these studies, we conformed that evaluation of internal leak conditions including discrimination of leak or not, and the detectable minimum leak rate is possible, and also it is expected to contribute to safe operation and prevention of energy loss in power plants.

Numerical investigation on the flow noise reduction due to curved pipe based on wavenumber-frequency analysis in pressure relief valve pipe system (감압 밸브 배관 시스템 내 파수-주파수 분석을 통한 곡관의 유동소음 저감에 대한 수치적 연구)

  • Garam, Ku;Cheolung, Cheong
    • The Journal of the Acoustical Society of Korea
    • /
    • v.41 no.6
    • /
    • pp.705-712
    • /
    • 2022
  • A sudden pressure drop caused by the pressure relief valve acts as a strong noise source and propagates the compressible pressure fluctuation along the pipe wall, which becomes a excitation source of Acoustic Induced Vibration (AIV). Therefore, in this study, the numerical methodology is developed to evaluate the reduction effect of compressible pressure fluctuation due to curved pipe in the pressure relief valve system. To describe the acoustic wave caused by density fluctuation, unsteady compressible Large Eddy Simulation (LES) technique, which is high accuracy numerical method, Smagorinsky-Lilly subgrid scale model is applied. Wavenumber-frequency analysis is performed to extract the compressible pressure fluctuation component, which is propagated along the pipe, from the flow field, and it is based on the wall pressure on the upstream and downstream pipe from the curved pipe. It is shown that the plane wave and the 1st mode component in radial direction are dominant along the downstream direction, and the overall acoustic power was reduced by 3 dB through the curved pipe. From these results, the noise reduction effect caused by curved pipe is confirmed.

Analysis of Cylinder Compression Pressure & Valve Timing by Motoring Current & Crank Signal during Cranking (모터링시 전류 파형과 크랭크각 센서를 이용한 기관의 압축압력 및 밸브 타이밍 분석)

  • Kim, In-Tae;Park, Kyoung-Suk;Shim, Beom-Joo
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.19 no.5
    • /
    • pp.45-50
    • /
    • 2011
  • Compression pressure of individual cylinder and valve timing have big influence on combustion pressure, indicated mean effective pressure (IMEP), emission, vibration, combustion noise and many other combustion parameters. Conventional method, however, to check compression pressure uniformity is done by mechanical pressure gage and valve timing is checked manually. This conventional method causes inaccuracy of cylinder pressure measurement because of different cranking speed results from battery status and temperature. Also to check valve timing, related FEAD parts should be disassembled and timing mark should be checked. This study describes and suggests new methodology to measure compression pressure by analysis of start motor current and to check valve timing by cylinder pressure with high accuracy. Results, it is found that detection of bulky as well as small leaky cylinder is possible by cranking motor current analysis and wrong valve timing can be detected by cylinder pressure analysis and cam and crank sensor signal.

Application of Quality Engineering for EER and Noise of Compressor (품질공학(TAGUCHI METHOD)에 의한 COMPRESSOR의 성능과 소음에 관한 연구)

  • 박성근;임금식
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 1994.10a
    • /
    • pp.148-154
    • /
    • 1994
  • The dynamic analysis of S/N ratio in this study to improve EER has proven to be very effective. The optimized condition can improve EER during the developing process without increasing noise and any other investment. If this method is used widely to design valve systems of compressor for refrigeration and air-conditioning, output capacity will be greatly increased for industry.

  • PDF