DOI QR코드

DOI QR Code

잡음이 있는 3차원 점군 데이터에서 밸브 모델링 및 모델 추출

Valve Modeling and Model Extraction on 3D Point Cloud data

  • 오기원 (한국기술교육대학교 전기전자통신공학부) ;
  • 최강선 (한국기술교육대학교 전기전자통신공학부)
  • Oh, Ki Won (School of Electrical, Electronics & Communication, KOREATECH) ;
  • Choi, Kang Sun (School of Electrical, Electronics & Communication, KOREATECH)
  • 투고 : 2015.09.03
  • 심사 : 2015.11.20
  • 발행 : 2015.12.25

초록

LIDAR를 이용해서 얻은 3차원 점군 데이터는 작은 물체를 추출하기에는 오차의 영향이 크기 때문에 작은 밸브를 자동으로 추출하는데 많은 어려움이 있다. 본 논문에서는 이러한 잡음이 있는 3차원 점군 데이터 사이에서 밸브의 위치 및 방향(Pose)의 정보를 얻는 방법을 제안한다. Pose를 얻기 위해서 밸브가 원환체 모양의 손잡이, 원통 모양의 Rib, 평면 모양의 중심축 평면인 기본 도형으로 이루어진 모델이라고 가정한다. 그리고 밸브의 중심 좌표에 대한 추가적인 입력을 받아서 밸브의 Pose를 추출한다. 중심점을 기준으로 거리에 따른 히스토그램을 생성하고, 히스토그램의 값에 따라 손잡이, Rib, 중심축 평면의 파라미터를 통계적인 방법으로 추출하여 최종 밸브의 Pose를 추출한다. 추출된 밸브의 Pose를 이용하여 3차원 점군 데이터에 밸브의 모형을 각 모양으로 복원한다.

It is difficult to extract small valve automatically in noisy 3D point cloud obtained from LIDAR because small object is affected by noise considerably. In this paper, we assume that the valve is a complex model consisting of torus, cylinder and plane represents handle, rib and center plane to extract a pose of the valve. And to extract the pose, we received additional input: center of the valve. We generated histogram of distance between the center and each points of point cloud, and obtain pose of valve by extracting parameters of handle, rib and center plane. Finally, the valve is reconstructed.

키워드

참고문헌

  1. Lowe, David G, "Object recognition from local scale-invariant features," Proceedings of the International Conference on Computer Vision. pp. 1150-1157, 1999
  2. H. Bay, T. Tuytelaars, and L. Van Gool, "Surf : Speeded up robust features," in European Conference on Computer Vision, May 2006.
  3. S. Gim, C. Yang, J. Lee, J. Kim, and H. Kim, "Object and Pose Recognition with Boundary Extraction from 3 Dimensional Depth Information," Journal of the Institute of Electronics Engineers of Korea, Vol. 48, no. 48, pp. 15-23, 2011.
  4. S. Hwang, J. Yoo, H. Kim, S. Kim, K. Paeng, and S. Kim, "High-resolution 3D Object Reconstruction using Multiple Cameras," Journal of the Institute of Electronics Engineers of Korea, Vol. 50, no. 10, pp. 2602-2613, 2013.
  5. C. Park, and D. Kim, "Obstacle Detection for Generating the Motion of Humaniod Robot," in Jounal of Institute of Control, Robotics and Systems, 2012.
  6. G. Kim, and D. Kang, "An Implementation of Object Detection and Tracking Algorithm Using a Fusion Method of SURF and Kalman Filter," JKIIT, Vol. 13, no. 2, pp. 59-64, Feb. 2015.
  7. J. Liu, Z. Wu, "An adaptive approach for primitive shape extraction from point clouds," Optik, Vol. 125, pp. 2000-2008, May 2014. https://doi.org/10.1016/j.ijleo.2013.03.176
  8. J. Niemeyer, F. Rottensteiner and U. Soergel, "Contextual classification of lidar data and building object detection in urban areas," ISPRS Journal of Photogrammetry and Remote Sensing, Vol. 87, pp. 152-165, Jan. 2014. https://doi.org/10.1016/j.isprsjprs.2013.11.001
  9. J. Tang and A. Zakhor, "3D Object Detection from Roadside Data Using Laser Scanners," in Proc. of SPIE, Vol. 7864, California, USA, Jan. 2011.
  10. H. Himmelsbach, A. Muller, T. Luttel and H. -J. Wunsche, "LIDAR-based 3D Object Perception," Proc. of 1st international workshop on cognition for technical systems, Vol. 1, 2008.
  11. R. -B. Rusu, Z. -C. Marton, N. Blodow, M. Dolha and M. Beetz, "Towards 3D Point cloud based object maps for household environments," Robotics and Autonomous Systems, Vol. 56, pp. 927-941, Nov. 2008. https://doi.org/10.1016/j.robot.2008.08.005
  12. R. Schnabel, "Efficient Point-Cloud Processing with Primitive Shapes," Dissertation, Universitat Bonn, Dec. 2010.
  13. D. Marshall, G. Lukacs and R. Martin, "Robust Segmentation of Primitives from Range Data in the Presence of Geometric Degeneracy," IEEE Trans. Pattern Analysis and Machine Intelligence, Vol. 23, No. 3, pp. 304-314, March 2001. https://doi.org/10.1109/34.910883