• Title/Summary/Keyword: Value problem

Search Result 4,708, Processing Time 0.032 seconds

Operating Room Reservation Problem Considering Patient Priority : Modified Value Iteration Method with Binary Search (환자 우선순위를 고려한 수술실 예약 : 이진검색을 활용한 수정 평가치반복법)

  • Min, Dai-Ki
    • IE interfaces
    • /
    • v.24 no.4
    • /
    • pp.274-280
    • /
    • 2011
  • Delayed access to surgery may lead to deterioration in the patient condition, poor clinical outcomes, increase in the probability of emergency admission, or even death. The purpose of this work is to decide the number of patients selected from a waiting list and to schedule them in accordance with the operating room capacity in the next period. We formulate the problem as an infinite horizon Markov Decision Process (MDP), which attempts to strike a balance between the patient waiting times and overtime works. Structural properties of the proposed model are investigated to facilitate the solution procedure. The proposed procedure modifies the conventional value iteration method along with the binary search technique. An example of the optimal policy is provided, and computational results are given to show that the proposed procedure improves computational efficiency.

POSITIVE SOLUTIONS FOR NONLINEAR m-POINT BVP WITH SIGN CHANGING NONLINEARITY ON TIME SCALES

  • HAN, WEI;REN, DENGYUN
    • Journal of applied mathematics & informatics
    • /
    • v.35 no.5_6
    • /
    • pp.551-563
    • /
    • 2017
  • In this paper, by using fixed point theorems in cones, the existence of positive solutions is considered for nonlinear m-point boundary value problem for the following second-order dynamic equations on time scales $$u^{{\Delta}{\nabla}}(t)+a(t)f(t,u(t))=0,\;t{\in}(0,T),\;{\beta}u(0)-{\gamma}u^{\Delta}(0)=0,\;u(T)={\sum_{i=1}^{m-2}}\;a_iu({\xi}_i),\;m{\geq}3$$, where $a(t){\in}C_{ld}((0,T),\;[0,+{\infty}))$, $f{\in}C([0,T]{\times}[0,+{\infty}),\;(-{\infty},+{\infty}))$, the nonlinear term f is allowed to change sign. We obtain several existence theorems of positive solutions for the above boundary value problems. In particular, our criteria generalize and improve some known results [15] and the obtained conditions are different from related literature [14]. As an application, an example to demonstrate our results is given.

SOLVING SINGULAR NONLINEAR TWO-POINT BOUNDARY VALUE PROBLEMS IN THE REPRODUCING KERNEL SPACE

  • Geng, Fazhan;Cui, Minggen
    • Journal of the Korean Mathematical Society
    • /
    • v.45 no.3
    • /
    • pp.631-644
    • /
    • 2008
  • In this paper, we present a new method for solving a nonlinear two-point boundary value problem with finitely many singularities. Its exact solution is represented in the form of series in the reproducing kernel space. In the mean time, the n-term approximation $u_n(x)$ to the exact solution u(x) is obtained and is proved to converge to the exact solution. Some numerical examples are studied to demonstrate the accuracy of the present method. Results obtained by the method are compared with the exact solution of each example and are found to be in good agreement with each other.

Direct Search Methods for Nonlinear Optimization Problem used ART Theory

  • Son, Jun-Hyeok;Seo, Bo-Hyeok
    • Proceedings of the KIEE Conference
    • /
    • 2006.07d
    • /
    • pp.1830-1831
    • /
    • 2006
  • In this paper, the search is conducted along each of the coordinate directions for finding the minimum. If $e_i$ is the unit vector along the coordinate direction i, we determine the value a, minimizing f(a)= $f(x+ae_i)$, where a is a real number. A move is made to the new point $x+a_ie_i$ at the end of the search along the direction i. In an n dimensional problem, we define the search along all the directions as one stage. The function value at the end of the stage is compared to the value at the beginning of the stage in establishing the convergence. The gradient appears to be zero at point. We can safeguard this by introducing an acceleration step of one additional step along the pattern direction developed by moves along the coordinate directions.

  • PDF

NONTRIVIAL SOLUTIONS FOR BOUNDARY-VALUE PROBLEMS OF NONLINEAR FRACTIONAL DIFFERENTIAL EQUATIONS

  • Guo, Yingxin
    • Bulletin of the Korean Mathematical Society
    • /
    • v.47 no.1
    • /
    • pp.81-87
    • /
    • 2010
  • In this paper, we consider the existence of nontrivial solutions for the nonlinear fractional differential equation boundary-value problem(BVP) $-D_0^{\alpha}+u(t)=\lambda[f(t, u(t))+q(t)]$, 0 < t < 1 u(0) = u(1) = 0, where $\lambda$ > 0 is a parameter, 1 < $\alpha$ $\leq$ 2, $D_{0+}^{\alpha}$ is the standard Riemann-Liouville differentiation, f : [0, 1] ${\times}{\mathbb{R}}{\rightarrow}{\mathbb{R}}$ is continuous, and q(t) : (0, 1) $\rightarrow$ [0, $+\infty$] is Lebesgue integrable. We obtain serval sufficient conditions of the existence and uniqueness of nontrivial solution of BVP when $\lambda$ in some interval. Our approach is based on Leray-Schauder nonlinear alternative. Particularly, we do not use the nonnegative assumption and monotonicity which was essential for the technique used in almost all existed literature on f.

SOLUTIONS FOR A CLASS OF FRACTIONAL BOUNDARY VALUE PROBLEM WITH MIXED NONLINEARITIES

  • Zhang, Ziheng
    • Bulletin of the Korean Mathematical Society
    • /
    • v.53 no.5
    • /
    • pp.1585-1596
    • /
    • 2016
  • In this paper we investigate the existence of nontrivial solutions for the following fractional boundary value problem (FBVP) $$\{_tD_T^{\alpha}(_0D_t^{\alpha}u(t))={\nabla}W(t,u(t)),\;t{\in}[0,T],\\u(0)=u(T)=0,$$ where ${\alpha}{\in}(1/2,1)$, $u{\in}{\mathbb{R}}^n$, $W{\in}C^1([0,T]{\times}{\mathbb{R}}^n,{\mathbb{R}})$ and ${\nabla}W(t,u)$ is the gradient of W(t, u) at u. The novelty of this paper is that, when the nonlinearity W(t, u) involves a combination of superquadratic and subquadratic terms, under some suitable assumptions we show that (FBVP) possesses at least two nontrivial solutions. Recent results in the literature are generalized and significantly improved.

SOLUTIONS OF STURM-LIOUVILLE BOUNDARY VALUE PROBLEMS FOR HIGHER-ORDER DIFFERENTIAL EQUATIONS

  • Liu, Yuji
    • Journal of applied mathematics & informatics
    • /
    • v.24 no.1_2
    • /
    • pp.231-243
    • /
    • 2007
  • The existence of solutions of a class of two-point boundary value problems for higher order differential equations is studied. Sufficient conditions for the existence of at least one solution are established. It is of interest that the nonlinearity f in the equation depends on all lower derivatives, and the growth conditions imposed on f are allowed to be super-linear (the degrees of phases variables are allowed to be greater than 1 if it is a polynomial). The results are different from known ones since we don't apply the Green's functions of the corresponding problem and the method to obtain a priori bound of solutions are different enough from known ones. Examples that can not be solved by known results are given to illustrate our theorems.

SINGULAR THIRD-ORDER 3-POINT BOUNDARY VALUE PROBLEMS

  • Palamides, Alex P.
    • Journal of applied mathematics & informatics
    • /
    • v.28 no.3_4
    • /
    • pp.697-710
    • /
    • 2010
  • In this paper, we prove existence of infinitely many positive and concave solutions, by means of a simple approach, to $3^{th}$ order three-point singular boundary value problem {$x^{\prime\prime\prime}(t)=\alpha(t)f(t,x(t))$, 0 < t < 1, $x(0)=x'(\eta)=x^{\prime\prime}(1)=0$, (1/2 < $\eta$ < 1). Moreover with respect to multiplicity of solutions, we don't assume any monotonicity on the nonlinearity. We rely on a combination of the analysis of the corresponding vector field on the phase-space along with Knesser's type properties of the solutions funnel and the well-known Krasnosel'ski$\breve{i}$'s fixed point theorem. The later is applied on a new very simple cone K, just on the plane $R^2$. These extensions justify the efficiency of our new approach compared to the commonly used one, where the cone $K\;{\subset}\;C$ ([0, 1], $\mathbb{R}$) and the existence of a positive Green's function is a necessity.

EIGENVALUE PROBLEMS FOR SYSTEMS OF NONLINEAR HIGHER ORDER BOUNDARY VALUE PROBLEMS

  • Rao, A. Kameswara;Rao, S. Nageswara
    • Journal of applied mathematics & informatics
    • /
    • v.28 no.3_4
    • /
    • pp.711-721
    • /
    • 2010
  • Values of the parameter $\lambda$ are determined for which there exist positive solutions of the system of boundary value problems, $u^{(n)}+{\lambda}p(t)f(\upsilon)=0$, $\upsilon^{(n)}+{\lambda}q(t)g(u)=0$, for $t\;{\in}\;[a,b]$, and satisfying, $u^{(i)}(a)=0$, $u^{(\alpha)}(b)=0$, $\upsilon^{(i)}(a)=0$, $\upsilon^{(\alpha)}(b)=0$, for $0\;{\leq}\;i\;{\leq}\;n-2$ and $1\;{\leq}\;\alpha\;\leq\;n-1$ (but fixed). A well-known Guo-Krasnosel'skii fixed point theorem is applied.

A sample size calibration approach for the p-value problem in huge samples

  • Park, Yousung;Jeon, Saebom;Kwon, Tae Yeon
    • Communications for Statistical Applications and Methods
    • /
    • v.25 no.5
    • /
    • pp.545-557
    • /
    • 2018
  • The inclusion of covariates in the model often affects not only the estimates of meaningful variables of interest but also its statistical significance. Such gap between statistical and subject-matter significance is a critical issue in huge sample studies. A popular huge sample study, the sample cohort data from Korean National Health Insurance Service, showed such gap of significance in the inference for the effect of obesity on cause of mortality, requiring careful consideration. In this regard, this paper proposes a sample size calibration method based on a Monte Carlo t (or z)-test approach without Monte Carlo simulation, and also proposes a test procedure for subject-matter significance using this calibration method in order to complement the deflated p-value in the huge sample size. Our calibration method shows no subject-matter significance of the obesity paradox regardless of race, sex, and age groups, unlike traditional statistical suggestions based on p-values.