• 제목/요약/키워드: Vacuum pressure difference

검색결과 100건 처리시간 0.027초

진공청소기용 팬-모터 어셈블리의 시스템-레벨 분석 (System-level Analysis of a Fan-motor Assembly for Vacuum Cleaner)

  • 박창환;박경현;장경식
    • 한국유체기계학회 논문집
    • /
    • 제20권1호
    • /
    • pp.5-14
    • /
    • 2017
  • A fan-motor assembly in a vacuum cleaner is analyzed through system-level analysis method. This system consisted of three components, a fan, motor, and the flow resistance of the motor, or of the vacuum cleaner. System-level analysis method is characterized by the combination of torque matching at a constant throttling condition between the fan and the motor and the pressure drop at a constant flow rate due to the flow resistance of the motor, or of the vacuum cleaner. The performance characteristics of the fan-motor assembly and the vacuum cleaner system could be predicted over the whole range of operation, based on the characteristics of each component. The predicted performance of the vacuum cleaner system through system-level analysis agreed well with the experimental results within 4.5% difference of pressure and 6% difference of the efficiency. The effect of flow resistance of a motor is investigated and it is found that the efficiency decrease of fan-motor assembly at the constant flow rate due to the flow resistance of a motor is determined by the flow resistance ratio(FRR), which is defined as a ratio of flow resistance of motor and the flow resistance of a constant throttling condition of a given point. The fan-motor assembly(S2 model) was modified to reduce the FRR from 9.0% to 2.4% and the experimental result shows that the efficiency of S2 model was improved by about 3% at best efficiency point.

Shallow ground treatment by a combined air booster and straight-line vacuum preloading method: A case study

  • Feng, Shuangxi;Lei, Huayang;Ding, Xiaodong;Zheng, Gang;Jin, Yawei
    • Geomechanics and Engineering
    • /
    • 제24권2호
    • /
    • pp.129-141
    • /
    • 2021
  • The vacuum preloading method has been used in many countries for soil improvement and land reclamation. However, the treatment time is long and the improvement effect is poor for the straight-line vacuum preloading method. To alleviate such problems, a novel combined air booster and straight-line vacuum preloading method for shallow ground treatment is proposed in this study. Two types of traditional vacuum preloading and combined air booster and straight-line vacuum preloading tests were conducted and monitored in the field. In both tests, the depth of prefabricated vertical drains (PVDs) is 4.5m, the distance between PVDs is 0.8m, and the vacuum preloading time is 60 days. The prominent difference between the two methods is when the preloading time is 45 days, the injection pressure of 250 kPa is adopted for combined air booster and straight-line vacuum preloading test to inject air into the ground. Based on the monitoring data, this paper systematically studied the mechanical parameters, hydraulic conductivity, pore water pressure, settlement and subsoil bearing capacity, as determined by the vane shear strength, to demonstrate that the air-pressurizing system can improve the consolidation. The consolidation time decreased by 15 days, the pore water pressure decreased to 60.49%, and the settlement and vane shear strengths increased by 45.31% and 6.29%, respectively, at the surface. These results demonstrate the validity of the combined air booster and straight-line vacuum preloading method. Compared with the traditional vacuum preloading, the combined air booster and straight-line vacuum preloading method has better reinforcement effect. In addition, an estimation method for evaluating the average degree of consolidation and an empirical formula for evaluating the subsoil bearing capacity are proposed to assist in engineering decision making.

생활폐기물 자동집하시설용 다단직렬연결 원심블로어 운전특성 (Operating Characteristics of Serially Connected Centrifugal Blowers Used for Automated Vacuum Waste Collection System)

  • 장춘만;이종성
    • 한국유체기계학회 논문집
    • /
    • 제17권4호
    • /
    • pp.40-46
    • /
    • 2014
  • This paper describes blower performance characteristics of a automated vacuum waste collection system. Blowers serially connected to six or seven centrifugal blowers are evaluated by experimental measurements to understand blower performances according to blower numbers operated. Two different blowers and duct diameters connected to the main blowers are considered. Data acquisition system is introduced to measure pressure and pressure difference at the main duct simultaneously, which is connected to several blowers serially. A auxiliary blower, which is installed between a filter room and an air deodorizing apparatus, is also added to simulate its performance effect on the main blower. Throughout the experimental measurements of the blower system, it is found that pressure and inlet velocity at the upstream of a blower increase 3.7 and 2.4 times separately by increasing the operating blower numbers from one to seven. It is noted that blower efficiency and pressure measured at the system vary according to the distance between a air intake and a blower system. Auxiliary blower is effective to increase blower inlet suction pressure, while total energy consumption is increased relatively.

Measurement of electron density of atmospheric pressure Ar plasma jet by using Michelson interferometer

  • Lim, Jun-Sup;Hong, Young June;Choi, Eun Ha
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2016년도 제50회 동계 정기학술대회 초록집
    • /
    • pp.195.1-195.1
    • /
    • 2016
  • Currently, as Plasma application is expanded to the industrial and medical industrial, low temperature plasma applications became important. Especially in medical and biology, many researchers have studied about generated radical species in atmospheric pressure low temperature plasma directly adapted to human body. Therefore, so measurement their plasma parameter is very important work and is widely studied all around world. One of the plasma parameters is electron density and it is closely relative to radical production through the plasma source. some kinds of method to measuring the electron density are Thomson scattering spectroscopy and Millimeter-wave transmission measurement. But most methods have very expensive cost and complex configuration to composed of experiment system. We selected Michelson interferometer system which is very cheap and simple to setting up, so we tried to measuring electron density by laser interferometer with laser beam chopping module for measurement of temporal phase difference in plasma jet. To measuring electron density at atmospheric pressure Ar plasma jet, we obtained the temporal phase shift signal of interferometer. Phase difference of interferometer can occur because of change by refractive index of electron density in plasma jet. The electron density was able to estimate with this phase difference values by using physical formula about refractive index change of external electromagnetic wave in plasma. Our guiding laser used Helium-Neon laser of the centered wavelength of 632 nm. We installed chopper module which can make a 4kHz pulse laser signal at the laser front side. In this experiment, we obtained more exact synchronized phase difference between with and without plasma jet than reported data at last year. Especially, we found the phase difference between time range of discharge current. Electron density is changed from Townsend discharge's electron bombardment, so we observed the phase difference phenomenon and calculated the temporal electron density by using phase shift. In our result, we suggest that the electron density have approximately range between 1014~ 1015 cm-3 in atmospheric pressure Ar plasma jet.

  • PDF

저진공 내 시료가열판과 시료의 열전달 (Heat Transfer between Substrate and Substrate-heater in Low Vacuum)

  • 박현재;오수기;신용현;정광화
    • 한국진공학회지
    • /
    • 제17권4호
    • /
    • pp.302-310
    • /
    • 2008
  • 진공 챔버 내부에서 열접촉된 시료가열장치와 시료 사이의 열전달 현상을 고찰하였다. 열전달은 가스 유량과 기체 압력에 따른 대류현상, 시료와 접촉하는 기판가열장치의 표면 거칠기 및 접촉압력에 따른 전도현상, 기판가열장치의 표면 방사율에 따른 복사현상으로 나누어 푸리에 식과 슈테판-볼츠만 식을 이용하여 열흐름 값을 분석하였다. 실험은 시료가열장치의 온도를 $100\;-\;500^{\circ}C$ 사이에서 일정하게 유지하면서 300 mTorr - 1 Torr 사이의 압력에 따른 시료의 온도를 측정하고, 푸리에 식과 슈테판-볼츠만 식을 이용하여 열흐름 값을 계산하였다. 열흐름 값의 산출에 사용된 푸리에 계수의 정확성을 확인하기 위해, 역으로 열흐름 값으로부터 온도차를 구하는 방법을 사용하였으며 0.33 % 오차 내에서 재현됨을 확인하였다.

진공 해동과 침수 해동에 의한 냉동 가다랑어(Katsuwonus pelamis)의 품질 차이에 관한 연구 (Comparison of the Quality of Frozen Skipjack Tuna Katsuwonus pelamis Thawed by Vacuum and Water Immersion)

  • 이태헌;구재근
    • 한국수산과학회지
    • /
    • 제45권6호
    • /
    • pp.635-639
    • /
    • 2012
  • Thawing is very important in tuna canning because it affects the yield and quality of the canned tuna, and productivity. The effects of vacuum thawing on the quality, yield, and thawing times of frozen skipjack were compared with conventional water immersion thawing. The time required to thaw frozen skipjack tuna (weight 2.5-3.0 kg) from $-10^{\circ}C$ to $-2^{\circ}C$ was 75, 60, and 37 min at a pressure of 17, 23, and 31 mmHg, respectively, corresponding to temperatures of 20, 25, and $30^{\circ}C$. The thawing time decreased with increasing pressure. Vacuum thawing shorten the thawing time by 58-80% compared with water immersion thawing at $20^{\circ}C$, and there was less difference between the core and skin temperatures than with water immersion thawing. No significant change in pH or histamine was observed according to thawing method, while the volatile basic nitrogen (VBN), trimethylamine (TMA), and K value were lower with vacuum thawing than water immersion thawing. Based on these results, we believe that vacuum thawing minimizes the biochemical and microbial changes that occur while thawing frozen skipjack tuna.

Thermo-optical Analysis and Correction Method for an Optical Window in Low Temperature and Vacuum

  • Ruoyan Wang;Ruihu Ni;Zhishan Gao;Lingjie Wang;Qun Yuan
    • Current Optics and Photonics
    • /
    • 제7권2호
    • /
    • pp.213-221
    • /
    • 2023
  • The optical window, as a part of the collimator system, is the connector between the outside light source and the optical system inside a vacuum tank. The temperature and pressure difference between the two sides of the optical window cause not only thermoelastic deformation, but also refractive-index irregularities. To suppress the influence of these two changes on the performance of the collimator system, thermo-optical analysis is employed. Coefficients that characterize the deformations and refractive-index distributions are derived through finite-element analysis, and then imported into the collimator system using a user-defined surface in ZEMAX. The temperature and pressure difference imposed on the window seriously degrade the system performance of the collimator. A decentered and tilted lens group is designed to correct both field aberrations and the thermal effects of the window. Through lens-interval adjustment of the lens group, the diffraction-limited performance of the collimator can be maintained with a vacuum level of 10-5 Pa and inside temperature ranging from -100 ℃ to 20 ℃.

Suction 연직배수 공법과 PDB 공법의 변위거동 차이에 대한 유한 요소 해석 (Finite element analysis for the difference of displacement behavior developed from suction drain method and vertical drain method)

  • 김기년;안동욱;한상재;정승용;김수삼
    • 한국지반공학회:학술대회논문집
    • /
    • 한국지반공학회 2006년도 춘계 학술발표회 논문집
    • /
    • pp.1165-1172
    • /
    • 2006
  • In this study, an aspect of settlement, developed from different ground improvement method like suction drain method using vacuum pressure and vertical drain method using overburden pressure, was compared each other. In order to analyze settlement tendency of each method exactly, the finite element analysis program was used. The analyses of vertical settlement and lateral displacement for suction drain method and vertical drain method were conducted independently during the solving stage. The initial condition of drainage zone was fixed with 25m depth and 21m width. After the program analyses, the settlement condition had a different tendency with the ground improvement method. Especially, in the results of vertical drain method, the disparity of settlement between the middle of improved zone and unimproved zone. In the case of suction drain method, however, the difference of settlement was smaller than that of vertical drain method.

  • PDF

정전 탐침을 이용한 유도 결합형 반응기에서 발생하는 산소 플라즈마의 특성연구 (Characterization of oxygen plasma by using a langmuir probe in the inductively coupled plasma)

  • 김종식;김곤호;정태훈;염근영;권광호
    • 한국진공학회지
    • /
    • 제9권4호
    • /
    • pp.428-435
    • /
    • 2000
  • 정전 탐침을 이용하여 유도 결합형 반응기에서 발생하는 산소 플라즈마의 음이온 발생 특성을 관찰하였다. 입력전력과 운전압력 조건에 따른 산소 플라즈마에서 electronegative 음이온 플라즈마의 입력전력과 운전압력에 따른 정전 탐침에 흐르는 포화 양 전류 대 포화 음 전류(전자 전류와 음 이온 전류의 합)의 전류 비율과 플라즈마 부유 전위와 플라즈마 전위 차의 변화로부터 음이온 발생 특성관찰을 하였다. 전류비의 증가와 전위차 값의 감소는 입력전력이 증가함에 따라 약 30∼60 mTorr 운전압력 영역에서 나타났으며 이 조건에서 음이온의 발생량이 증가함을 의미하고, 플라즈마내의 이온들은 음이온과 재결합에 의한 손실이 증가하여 플라즈마 밀도가 감소함을 알 수 있었다.

  • PDF