• Title/Summary/Keyword: VSMCs

Search Result 84, Processing Time 0.028 seconds

Kaempferol inhibits the platelet-derived growth factor $\beta$-receptor tyrosine-phosphorylation and its downstream intracellular signal transduction pathway in rat aortic vascular smooth muscle cells

  • Kim, Soo-Yeon;Kim, Jin-Ho;Lim, Yong;Yoo, Hwan-Soo;Yun, Yeo-Pyo
    • Proceedings of the PSK Conference
    • /
    • 2003.10b
    • /
    • pp.108.2-108.2
    • /
    • 2003
  • Kaempferol, a flavonol compound, has been reported as the anti-oxidant and anti-angiogenic agent and it has been found to inhibit cell growth in vitro. Abnormal proliferation of vascular smooth muscle cells (VSMCs) plays an important role in development of atherosclerosis. In this study, we examined the anti-proliferative effect and its mechanism on rat aortic VSMCs treated by kaempferol. kaempferol significantly inhibited the platelet-derived growth factor (PDGF)-BB-induced proliferation of rat aortic VSMCs in concentration-dependent manner by cell count and [$^3$H]-thymidine incorporation assay. (omitted)

  • PDF

Pathophysiological Regulation of Vascular Smooth Muscle Cells by Prostaglandin F2α-dependent Activation of Phospholipase C-β3 (Prostaglandin F2α 의존적 phospholipase C-β3 활성화에 의한 혈관평활근세포의 병태생리 조절 연구)

  • Kang, Ki Ung;Oh, Jun Young;Lee, Yun Ha;Lee, Hye Sun;Jin, Seo Yeon;Bae, Sun Sik
    • Journal of Life Science
    • /
    • v.28 no.12
    • /
    • pp.1516-1522
    • /
    • 2018
  • Atherosclerosis is an obstructive vessel disease mainly caused by chronic arterial inflammation to which the proliferation and migration of vascular smooth muscle cells (VSMCs) is the main pathological response. In the present study, the primary responsible inflammatory cytokine and its signaling pathway was investigated. The proliferation and migration of VSMCs was significantly enhanced by the prostaglandin $F_{2{\alpha}}$ ($PGF_{2{\alpha}}$), while neither was affected by tumor necrosis factor ${\alpha}$. Prostacyclin $I_2$ was seen to enhance the proliferation of VSMCs while simultaneously suppressing their migration. Both prostaglandin $D_2$ and prostaglandin $E_2$ significantly enhanced the migration of VSMCs, however, proliferation was not affected by either of them. The proliferation and migration of VSMCs stimulated by $PGF_{2{\alpha}}$ progressed in a dose-dependent manner; the $EC_{50}$ value of both proliferation and migration was $0.1{\mu}M$. VSMCs highly expressed the phospholipase isoform $C-{\beta}3$ ($PLC-{\beta}3$) while others such as $PLC-{\beta}1$, $PLC-{\beta}2$, and $PLC-{\beta}4$ were not expressed. Inhibition of the PLCs by U73122 completely blocked the $PGF_{2{\alpha}}$-induced migration of VSMCs, and, in addition, silencing $PLC-{\beta}3$ significantly diminished the $PGF_{2{\alpha}}$-induced proliferation and migration of VSMCs. Given these results, we suggest that $PGF_{2{\alpha}}$ plays a crucial role in the proliferation and migration of VSMCs, and activation of $PLC-{\beta}3$ could be involved in their $PGF_{2{\alpha}}$-dependent migration.

Study of Sophorae Radix on $H_2O_2$-mediated Apoptosis and Total Protein Expression Pattern in Vascular Smooth Muscle Cells (고삼이 $H_2O_2$에 의한 대동맥 평활근세포 고사 및 전체 단백질 발현에 미치는 영향)

  • Jeon In Cheol;Jeong Jae Eun;Son In Hwan;Lee Ju Seok;Jeong Seung Won;Jang Jae Ho;Lee Seon U;Lee In;Moon Byun Soon
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.18 no.6
    • /
    • pp.1652-1660
    • /
    • 2004
  • Apoptosis of vascular smooth muscle cells(VSMCs) is essential in atherogenesis, being a factor that modulates its early progression rather than a terminal event in the course of the disease. Various stimuli, including oxide lipoproteins, altered hemodynamic stress and free radical, can induced VSMCs apoptosis in vitro. The protective effects of Sophorae Radix (SR) on apoptotic cell death induced by H₂O₂ were investigated in VSMCs. The viability of VSMCs was markedly decreased by H₂O₂. Sophorae Radix protected the H202-induced apoptotic death of VSMCs, which was characterized as nuclear fragmentation and increase of sub-G0/G1 fraction .. Sophorae Radix decreased the activation of caspase-3 like protease induced by H₂O₂ and recovered control level from H202-induced PARP, Bak, Bcl-XL and mitochondrial membrane potential. These results suggest that Sophorae Radix protected VSMCs apoptotic death induced by H₂O₂ via inactivation of caspase-3 and modulation of mitochondrial function. Also, the expression profile of proteins by using two-dimensional (2-D) gel electrophoresis was screened. Future investigations will need to explore the use of an anti atherosclerotic therapy of Sophorae Radix, which relies on inhibition of the proapoptotic activation of the vascular smooth muscle cells.

Wall shear stress on vascular smooth muscle cells exerts angiogenic effects on extracranial arteriovenous malformations

  • Ryu, Jeong Yeop;Park, Tae Hyun;Lee, Joon Seok;Oh, Eun Jung;Kim, Hyun Mi;Lee, Seok-Jong;Lee, Jongmin;Lee, Sang Yub;Huh, Seung;Kim, Ji Yoon;Im, Saewon;Chung, Ho Yun
    • Archives of Plastic Surgery
    • /
    • v.49 no.1
    • /
    • pp.115-120
    • /
    • 2022
  • Background In addition to vascular endothelial cells, vascular smooth muscle cells (VSMCs) are subject to continuous shear stress because of blood circulation. The angiogenic properties of VSMCs in extracranial arteriovenous malformations (AVMs) may exceed those of normal blood vessels if the body responds more sensitively to mechanical stimuli. This study was performed to investigate the hypothesis that rapid angiogenesis may be achieved by mechanical shear stress. Methods VSMCs were obtained from six patients who had AVMs and six normal controls. The target genes were set to angiopoietin-2 (AGP2), aquaporin-1 (AQP1), and transforming growth factor-beta receptor 1 (TGFBR1). Reverse-transcriptase polymerase chain reaction (RT-PCR) and real-time PCR were implemented to identify the expression levels for target genes. Immunofluorescence was also conducted. Results Under the shear stress condition, mean relative quantity values of AGP2, AQP1, and TGFBR1 in AVM tissues were 1.927±0.528, 1.291±0.031, and 2.284±1.461 when compared with neutral conditions. The expression levels of all three genes in AVMs were higher than those in normal tissue except for AQP1 under shear stress conditions. Immunofluorescence also revealed increased staining of shear stress-induced genes in the normal tissue and in AVM tissue. Conclusions Shear stress made the VSMCs of AVMs more sensitive. Although the pathogenesis of AVMs remains unclear, our study showed that biomechanical stimulation imposed by shear stress may aggravate angiogenesis in AVMs.

Biophysically stressed vascular smooth muscle cells express MCP-1 via a PDGFR-β-HMGB1 signaling pathway

  • Ji Won Kim;Ju Yeon Kim;Hee Eun Bae;Chi Dae Kim
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.28 no.5
    • /
    • pp.449-456
    • /
    • 2024
  • Vascular smooth muscle cells (VSMCs) under biophysical stress play an active role in the progression of vascular inflammation, but the precise mechanisms are unclear. This study examined the cellular expression of monocyte chemoattractant protein 1 (MCP-1) and its related mechanisms using cultured rat aortic VSMCs stimulated with mechanical stretch (MS, equibiaxial cyclic stretch, 60 cycles/min). When the cells were stimulated with 10% MS, MCP-1 expression was markedly increased compared to those in the cells stimulated with low MS intensity (3% or 5%). An enzyme-linked immunosorbent assay revealed an increase in HMGB1 released into culture media from the cells stimulated with 10% MS compared to those stimulated with 3% MS. A pretreatment with glycyrrhizin, a HMGB1 inhibitor, resulted in the marked attenuation of MCP-1 expression in the cells stimulated with 10% MS, suggesting a key role of HMGB1 on MCP-1 expression. Western blot analysis revealed higher PDGFR-α and PDGFR-β expression in the cells stimulated with 10% MS than 3% MS-stimulated cells. In the cells deficient of PDGFR-β using siRNA, but not PDGFR-α, HMGB1 released into culture media was significantly attenuated in the 10% MS-stimulated cells. Similarly, MCP-1 expression induced in 10% MS-stimulated cells was also attenuated in cells deficient of PDGFR-β. Overall, the PDGFR-β signaling plays a pivotal role in the increased expression of MCP-1 in VSMCs stressed with 10% MS. Therefore, targeting PDGFR-β signaling in VSMCs might be a promising therapeutic strategy for vascular complications in the vasculatures under excessive biophysical stress.

Effects and Molecular Mechanisms of Eupatorium chinensis var. simplicifolium Extract on Abnormal Proliferation of Vascular Smooth Muscle Cells (등골나물추출물의 혈관 평활근 세포의 비정상 증식에 대한 억제 효과 및 분자기작)

  • Kim, Min-Jeong;Kim, Jihee;Lee, Jin-Ho;Kim, Minah;Woo, Keunjung;Kim, Han Sung;Kim, Tack-Joong
    • Journal of Life Science
    • /
    • v.31 no.9
    • /
    • pp.787-795
    • /
    • 2021
  • Eupatorium chinensis var. simplicifolium (EUC) has anti-inflammatory and antioxidant effects. Young sprouts of EUC have been used as food for a long time, and the whole EUC plant has been used as an herbal remedy in oriental medicine. Arteriosclerosis, or chronic inflammation in arterial vessels, is a cardiovascular disease and is involved in various disorders. Cardiovascular diseases such as restenosis and neuropathic hyperplasia are mainly caused by abnormal growth and movement due to multiple growth factors in vascular smooth muscle cells (VSMCs). Platelet-derived growth factor (PDGF) is a mitogen released from damaged vessel walls and is involved in the proliferation and migration of VSMCs. To determine the effects of EUC on the abnormal proliferation and migration of VSMCs, the present study investigated intracellular signaling pathways in PDGF-BB-induced VSMCs treated with and without EUC. Pretreating PDGF-BB-induced VSMCs with EUC tended to effectively decrease cell proliferation and migration. Subsequently, the intracellular growth-related signaling pathways of AKT, phospholipase C gamma (PLC-γ), and mitogen-activated protein kinase (MAPK) were investigated using western blotting to confirm inhibited phosphorylation. Furthermore, flow cytometry data showed that EUC blocked the cell cycle of VSMCs. These results suggest that EUC can inhibit the proliferation and migration of VSMCs by controlling the cell cycle and growth factor receptors. Furthermore, this indicates that EUC can be used as a preventative against cardiovascular disease resulting from abnormal proliferation and migration of VSMCs.

Role of zinc for calcification inhibitor protein in vascular smooth muscle cell plaque formation (혈관 플라그 형성 저해단백질에 대한 아연의 기능)

  • Shin, Mee-Young;Kwun, In-Sook
    • Journal of Nutrition and Health
    • /
    • v.49 no.1
    • /
    • pp.59-62
    • /
    • 2016
  • Purpose: Zinc, a biomineral present within and outside cells, manages various cellular mechanisms. In this study, we examined whether zinc was involved in vascular smooth muscle cell (VSMC) calcification via regulation of calcification inhibitor protein, osteopontin (OPN). Methods: Rat aorta cell line (A7r5 cells) and primary vascular smooth muscle cells (pVSMCs) from rat aorta were cultured with phosphate (1-5 mM) and zinc ($0-15{\mu}M$) as appropriate, along with osteoblasts (MC3T3-E1) as control. The cells were then stained for Ca and P deposition for calcification examination as well as osteopontin expression as calcification inhibitor protein was measured. Results: Both Ca and phosphate deposition increased as the addition of phosphate increased. In the same manner, the expression of osteopontin was upregulated as the addition of phosphate increased in both cell types. When zinc was added, Ca and P deposition decreased in VSMCs, while it increased in osteoblasts. Conclusion: The results imply that zinc may prevent VSMC calcification by stimulating calcification inhibitor protein OPN synthesis in VSMCs.

Feasibility of simultaneous measurement of cytosolic calcium and hydrogen peroxide in vascular smooth muscle cells

  • Chang, Kyung-Hwa;Park, Jung-Min;Lee, Moo-Yeol
    • BMB Reports
    • /
    • v.46 no.12
    • /
    • pp.600-605
    • /
    • 2013
  • Interplay between calcium ions ($Ca^{2+}$) and reactive oxygen species (ROS) delicately controls diverse pathophysiological functions of vascular smooth muscle cells (VSMCs). However, details of the $Ca^{2+}$ and ROS signaling network have been hindered by the absence of a method for dual measurement of $Ca^{2+}$ and ROS. Here, a real-time monitoring system for $Ca^{2+}$ and ROS was established using a genetically encoded hydrogen peroxide indicator, HyPer, and a ratiometric $Ca^{2+}$ indicator, fura-2. For the simultaneous detection of fura-2 and HyPer signals, 540 nm emission filter and 500 nm~ dichroic beamsplitter were combined with conventional exciters. The wide excitation spectrum of HyPer resulted in marginal cross-contamination with fura-2 signal. However, physiological $Ca^{2+}$ transient and hydrogen peroxide were practically measurable in HyPer-expressing, fura-2-loaded VSMCs. Indeed, distinct $Ca^{2+}$ and ROS signals could be successfully detected in serotonin-stimulated VSMCs. The system established in this study is applicable to studies of crosstalk between $Ca^{2+}$ and ROS.

Phosphate-Induced Rat Vascular Smooth Muscle Cell Calcification and the Implication of Zinc Deficiency in A7r5 Cell Viability

  • Shin, Mee-Young;Kwun, In-Sook
    • Preventive Nutrition and Food Science
    • /
    • v.18 no.2
    • /
    • pp.92-97
    • /
    • 2013
  • The calcification of vascular smooth muscle cells (VSMCs) is considered one of the major contributors for vascular disease. Phosphate is known as the inducer for VSMC calcification. In this study, we assessed whether phosphate affected cell viability and fetuin-A, a calcification inhibitor protein, both which are related to VSMC calcification. Also, VSMC viability by zinc level was assessed. The results showed that phosphate increased Ca and P deposition in VSMCs (A7r5 cell line, rat aorta origin). This phosphate-induced Ca and P deposition was consistent with the decreased A7r5 cell viability (P<0.05), which implies phosphate-induced calcification in A7r5 cells might be due to the decreased VSMC cell viability. As phosphate increased, the protein expression of fetuin-A protein was up-regulated. A7r5 cell viability decreased as the addition of cellular zinc level was decreased (P<0.05). The results suggested that zinc deficiency causes the decreased cell viability and it would be the future study to clarify how zinc does act for VSMC cell viability. The results suggest that the decreased VSMC viability by high P or low Zn in VSMCs may be the risk factor for vascular disease.

Neuromedin B modulates phosphate-induced vascular calcification

  • Park, Hyun-Joo;Kim, Mi-Kyoung;Kim, Yeon;Kim, Hyung Joon;Bae, Soo-Kyung;Bae, Moon-Kyoung
    • BMB Reports
    • /
    • v.54 no.11
    • /
    • pp.569-574
    • /
    • 2021
  • Vascular calcification is the heterotopic accumulation of calcium phosphate salts in the vascular tissue and is highly correlated with increased cardiovascular morbidity and mortality. In this study, we found that the expression of neuromedin B (NMB) and NMB receptor is upregulated in phosphate-induced calcification of vascular smooth muscle cells (VSMCs). Silencing of NMB or treatment with NMB receptor antagonist, PD168368, inhibited the phosphate-induced osteogenic differentiation of VSMCs by inhibiting Wnt/β-catenin signaling and VSMC apoptosis. PD168368 also attenuated the arterial calcification in cultured aortic rings and in a rat model of chronic kidney disease. The results of this study suggest that NMB-NMB receptor axis may have potential therapeutic value in the diagnosis and treatment of vascular calcification.