DOI QR코드

DOI QR Code

Pathophysiological Regulation of Vascular Smooth Muscle Cells by Prostaglandin F2α-dependent Activation of Phospholipase C-β3

Prostaglandin F2α 의존적 phospholipase C-β3 활성화에 의한 혈관평활근세포의 병태생리 조절 연구

  • Kang, Ki Ung (Pre-Medical School, Pusan National University School of Medicine) ;
  • Oh, Jun Young (Pre-Medical School, Pusan National University School of Medicine) ;
  • Lee, Yun Ha (Pre-Medical School, Pusan National University School of Medicine) ;
  • Lee, Hye Sun (Gene and Cell Therapy Center for Vessel-Associated Disease, Department of Pharmacology, Pusan National University of School of Medicine) ;
  • Jin, Seo Yeon (Gene and Cell Therapy Center for Vessel-Associated Disease, Department of Pharmacology, Pusan National University of School of Medicine) ;
  • Bae, Sun Sik (Gene and Cell Therapy Center for Vessel-Associated Disease, Department of Pharmacology, Pusan National University of School of Medicine)
  • 강기웅 (부산대학교 의과대학 의예과) ;
  • 오준영 (부산대학교 의과대학 의예과) ;
  • 이윤한 (부산대학교 의과대학 의예과) ;
  • 이혜선 (부산대학교 의과대학 약리학교실) ;
  • 진서연 (부산대학교 의과대학 약리학교실) ;
  • 배순식 (부산대학교 의과대학 약리학교실)
  • Received : 2018.08.03
  • Accepted : 2018.10.17
  • Published : 2018.12.30

Abstract

Atherosclerosis is an obstructive vessel disease mainly caused by chronic arterial inflammation to which the proliferation and migration of vascular smooth muscle cells (VSMCs) is the main pathological response. In the present study, the primary responsible inflammatory cytokine and its signaling pathway was investigated. The proliferation and migration of VSMCs was significantly enhanced by the prostaglandin $F_{2{\alpha}}$ ($PGF_{2{\alpha}}$), while neither was affected by tumor necrosis factor ${\alpha}$. Prostacyclin $I_2$ was seen to enhance the proliferation of VSMCs while simultaneously suppressing their migration. Both prostaglandin $D_2$ and prostaglandin $E_2$ significantly enhanced the migration of VSMCs, however, proliferation was not affected by either of them. The proliferation and migration of VSMCs stimulated by $PGF_{2{\alpha}}$ progressed in a dose-dependent manner; the $EC_{50}$ value of both proliferation and migration was $0.1{\mu}M$. VSMCs highly expressed the phospholipase isoform $C-{\beta}3$ ($PLC-{\beta}3$) while others such as $PLC-{\beta}1$, $PLC-{\beta}2$, and $PLC-{\beta}4$ were not expressed. Inhibition of the PLCs by U73122 completely blocked the $PGF_{2{\alpha}}$-induced migration of VSMCs, and, in addition, silencing $PLC-{\beta}3$ significantly diminished the $PGF_{2{\alpha}}$-induced proliferation and migration of VSMCs. Given these results, we suggest that $PGF_{2{\alpha}}$ plays a crucial role in the proliferation and migration of VSMCs, and activation of $PLC-{\beta}3$ could be involved in their $PGF_{2{\alpha}}$-dependent migration.

죽상동맥경화는 대동맥의 만성염증에 의해 주로 발병되는 폐쇄동맥질환이다. 혈관평활근세포의 증식 및 이동은 죽상동맥경화 발병의 주된 병리적 반응이다. 본 연구에서는 죽상동맥경화 발병기전을 유도하는 표적 염증반응 물질의 탐색 및 이들에 의한 신호전달 기전을 연구하였다. 혈관평활근세포의 증식 및 이동은 prostaglandin $F_{2{\alpha}}$ ($PGF_{2{\alpha}}$)에 의해 의미 있게 증가하였으나 tumor necrosis factor ${\alpha}$ ($TNF{\alpha}$)에 의해서는 증가하지 않았다. Prostacyclin $I_2$ ($PGI_2$)는 혈관평활근세포의 증식은 촉진시켰으나 이동은 오히려 억제하였다. prostaglandin $D_2$ ($PGD_2$) 및 prostaglandin $E_2$ ($PGE_2$)는 혈관평활근세포의 증식을 촉진시켰으나 이동에는 영향을 미치지 않았다. $PGF_{2{\alpha}}$는 용량 의존적으로 혈관평활근세포의 증식 및 이동을 촉진시켰고 EC50는 약 $0.1{\mu}M$로 관찰되었다. 혈관평활근세포에서 phospholipase $C-{\beta}3$ ($PLC-{\beta}3$) 아형의 발현은 매우 높았으나 $PLC-{\beta}1$, $PLC-{\beta}2$, 및 $PLC-{\beta}4$의 발현은 관찰되지 않았다. U73122 처리를 통해 PLC의 활성을 억제하면 $PGF_{2{\alpha}}$에 의한 혈관평활근세포의 이동이 억제되었다. 또한 $PLC-{\beta}3$의 발현을 억제하면 $PGF_{2{\alpha}}$에 의한 혈관평활근세포의 증식 및 이동이 억제되었다. 이러한 결과들을 바탕으로 $PGF_{2{\alpha}}$ 는 혈관평활근세포의 증식 및 이동에 중요한 역할을 수행하고, 여기에는 $PLC-{\beta}3$가 필수적인 역할을 담당하고 있음을 제안한다.

Keywords

SMGHBM_2018_v28n12_1516_f0001.png 이미지

Fig. 1. Regulation of VSMC proliferation and migration by prostaglandins.

SMGHBM_2018_v28n12_1516_f0002.png 이미지

Fig. 2. Dose-dependent proliferation and migration of VSMCs by PGF.

SMGHBM_2018_v28n12_1516_f0003.png 이미지

Fig. 3. Inhibition of PGF-induced migration of VSMCs by blocking of PLC activity.

SMGHBM_2018_v28n12_1516_f0004.png 이미지

Fig. 4. Attenuation of PGF-induced VSMC proliferation and migration by silencing of PLC-β3.

References

  1. Ali, M. S., Starke, R. M., Jabbour, P. M., Tjoumakaris, S. I., Gonzalez, L. F., Rosenwasser, R. H., Owens, G. K., Koch, W. J., Greig, N. H. and Dumont, A. S. 2013. TNF-alpha induces phenotypic modulation in cerebral vascular smooth muscle cells: implications for cerebral aneurysm pathology. J. Cereb. Blood Flow Metab. 33, 1564-1573. https://doi.org/10.1038/jcbfm.2013.109
  2. Basu, S., Whiteman, M., Mattey, D. L. and Halliwell, B. 2001. Raised levels of F(2)-isoprostanes and prostaglandin F(2alpha) in different rheumatic diseases. Ann. Rheum. Dis. 60, 627-631. https://doi.org/10.1136/ard.60.6.627
  3. Bennett, M. R., Sinha, S. and Owens, G. K. 2016. Vascular Smooth Muscle Cells in Atherosclerosis. Circ. Res. 118, 692-702. https://doi.org/10.1161/CIRCRESAHA.115.306361
  4. Blayney, L. M., Gapper, P. W. and Newby, A. C. 1996. Phospholipase C isoforms in vascular smooth muscle and their regulation by G-proteins. Br. J. Pharmacol. 118, 1003-1011. https://doi.org/10.1111/j.1476-5381.1996.tb15499.x
  5. Bolognese, R. J. and Corson, S. L. 1975. Interruption of pregnancy by prostaglandin 15-methyl F2alpha. Fertil. Steril. 26, 695-699. https://doi.org/10.1016/S0015-0282(16)41237-9
  6. Burleigh, M. E., Babaev, V. R., Yancey, P. G., Major, A. S., McCaleb, J. L., Oates, J. A., Morrow, J. D., Fazio, S. and Linton, M. F. 2005. Cyclooxygenase-2 promotes early atherosclerotic lesion formation in ApoE-deficient and C57BL/6 mice. J. Mol. Cell. Cardiol. 39, 443-452. https://doi.org/10.1016/j.yjmcc.2005.06.011
  7. Cipollone, F., Cicolini, G. and Bucci, M. 2008. Cyclooxygenase and prostaglandin synthases in atherosclerosis: recent insights and future perspectives. Pharmacol. Ther. 118, 161-180. https://doi.org/10.1016/j.pharmthera.2008.01.002
  8. Cipollone, F., Prontera, C., Pini, B., Marini, M., Fazia, M., De Cesare, D., Iezzi, A., Ucchino, S., Boccoli, G., Saba, V., Chiarelli, F., Cuccurullo, F. and Mezzetti, A. 2001. Overexpression of functionally coupled cyclooxygenase-2 and prostaglandin E synthase in symptomatic atherosclerotic plaques as a basis of prostaglandin E(2)-dependent plaque instability. Circulation 104, 921-927. https://doi.org/10.1161/hc3401.093152
  9. Gresset, A., Sondek, J. and Harden, T. K. 2012. The phospholipase C isozymes and their regulation. Subcell. Biochem. 58, 61-94.
  10. Griffin, B. W., Magnino, P. E., Pang, I. H. and Sharif, N. A. 1998. Pharmacological characterization of an FP prostaglandin receptor on rat vascular smooth muscle cells (A7r5) coupled to phosphoinositide turnover and intracellular calcium mobilization. J. Pharmacol. Exp. Ther. 286, 411-418.
  11. Ha, J. M., Yun, S. J., Kim, Y. W., Jin, S. Y., Lee, H. S., Song, S. H., Shin, H. K. and Bae, S. S. 2015. Platelet-derived growth factor regulates vascular smooth muscle phenotype via mammalian target of rapamycin complex 1. Biochem. Biophys. Res. Commun. 464, 57-62. https://doi.org/10.1016/j.bbrc.2015.05.097
  12. Hohjoh, H., Inazumi, T., Tsuchiya, S. and Sugimoto, Y. 2014. Prostanoid receptors and acute inflammation in skin. Biochimie 107 Pt A, 78-81. https://doi.org/10.1016/j.biochi.2014.08.010
  13. Holvoet, P. 2008. Relations between metabolic syndrome, oxidative stress and inflammation and cardiovascular disease. Verh. K. Acad. Geneeskd. Belg. 70, 193-219.
  14. Kawakami, T. and Xiao, W. 2013. Phospholipase C-beta in immune cells. Adv. Biol. Regul. 53, 249-257. https://doi.org/10.1016/j.jbior.2013.08.001
  15. Kim, D., Jun, K. S., Lee, S. B., Kang, N. G., Min, D. S., Kim, Y. H., Ryu, S. H., Suh, P. G. and Shin, H. S. 1997. Phospholipase C isozymes selectively couple to specific neurotransmitter receptors. Nature 389, 290-293. https://doi.org/10.1038/38508
  16. Kurkowska-Jastrzebska, I., Karlinski, M. A., Blazejewska-Hyzorek, B., Sarzynska-Dlugosz, I., Filipiak, K. J. and Czlonkowska, A. 2016. Carotid intima media thickness and blood biomarkers of atherosclerosis in patients after stroke or myocardial infarction. Croat. Med. J. 57, 548-557. https://doi.org/10.3325/cmj.2016.57.548
  17. Libby, P., Ridker, P. M. and Maseri, A. 2002. Inflammation and atherosclerosis. Circulation 105, 1135-1143. https://doi.org/10.1161/hc0902.104353
  18. Oga, T., Matsuoka, T., Yao, C., Nonomura, K., Kitaoka, S., Sakata, D., Kita, Y., Tanizawa, K., Taguchi, Y., Chin, K., Mishima, M., Shimizu, T. and Narumiya, S. 2009. Prostaglandin F(2alpha) receptor signaling facilitates bleomycininduced pulmonary fibrosis independently of transforming growth factor-beta. Nat. Med. 15, 1426-1430. https://doi.org/10.1038/nm.2066
  19. Pansuria, M., Xi, H., Li, L., Yang, X. F. and Wang, H. 2012. Insulin resistance, metabolic stress, and atherosclerosis. Front. Biosci. (Schol Ed) 4, 916-931.
  20. Patrono, C., Garcia Rodriguez, L. A., Landolfi, R. and Baigent, C. 2005. Low-dose aspirin for the prevention of atherothrombosis. N. Engl. J. Med. 353, 2373-2383. https://doi.org/10.1056/NEJMra052717
  21. Salazar, H. and Archer, D. F. 1974. Ultrastructural changes of the human corpus luteum of pregnancy induced by prostaglandin E2 in vitro. Eur. J. Obstet. Gynecol. Reprod. Biol. 4, S19-33.
  22. Santini, G., Mores, N., Malerba, M., Mondino, C., Macis, G. and Montuschi, P. 2016. Investigational prostaglandin D2 receptor antagonists for airway inflammation. Expert. Opin. Investig. Drugs 25, 639-652. https://doi.org/10.1080/13543784.2016.1175434
  23. Sasaguri, T. and Miwa, Y. 2004. Prostaglandin J2 family and the cardiovascular system. Curr. Vasc. Pharmacol. 2, 103-114. https://doi.org/10.2174/1570161043476384
  24. Smith, W. L., Urade, Y. and Jakobsson, P. J. 2011. Enzymes of the cyclooxygenase pathways of prostanoid biosynthesis. Chem. Rev. 111, 5821-5865. https://doi.org/10.1021/cr2002992
  25. Ulven, T. and Kostenis, E. 2006. Targeting the prostaglandin D2 receptors DP and CRTH2 for treatment of inflammation. Curr. Top. Med. Chem. 6, 1427-1444. https://doi.org/10.2174/15680266106061427
  26. Watanabe, T., Nakao, A., Emerling, D., Hashimoto, Y., Tsukamoto, K., Horie, Y., Kinoshita, M. and Kurokawa, K. 1994. Prostaglandin-F2-Alpha enhances tyrosine phosphorylation and DNA-synthesis through phospholipase-C coupled receptor via Ca2+-dependent intracellular pathway in Nih-3t3 cells. J. Biol. Chem. 269, 17619-17625.
  27. Yoshida, T. and Owens, G. K. 2005. Molecular determinants of vascular smooth muscle cell diversity. Circ. Res. 96, 280-291. https://doi.org/10.1161/01.RES.0000155951.62152.2e
  28. Yu, Y., Lucitt, M. B., Stubbe, J., Cheng, Y., Friis, U. G., Hansen, P. B., Jensen, B. L., Smyth, E. M. and FitzGerald, G. A. 2009. Prostaglandin F2alpha elevates blood pressure and promotes atherosclerosis. Proc. Natl. Acad. Sci. USA. 106, 7985-7990. https://doi.org/10.1073/pnas.0811834106
  29. Yun, S. J., Ha, J. M., Kim, E. K., Kim, Y. W., Jin, S. Y., Lee, D. H., Song, S. H., Kim, C. D., Shin, H. K. and Bae, S. S. 2014. Akt1 isoform modulates phenotypic conversion of vascular smooth muscle cells. Biochim. Biophys. Acta 1842, 2184-2192. https://doi.org/10.1016/j.bbadis.2014.08.014