본 논문은 불특정 화자의 단모음 인식에 관한 연구로써, fuzzy개념를 이용한 VQ(Vector Quantization)/NN(Neural Network)에 의한 음성 인식 방법을 제안한다. 이 방법은 fuzzy를 이용하여 VQ codebook에 의해 다중 관측열(multi-observation sequence)을 구해 각 symbol이 데이타로부터 가질 수 있는 확률값을 계산하여 이 값을 신경 회로망의 입력으로 사용하는 방법이다. 인식 대상어로는 한국어 단모음을 선정하였으며 10명의 남성 화자가 8개의 단모음을 10번씩 발음한 음성 데이터베이스를 이용하여 fuzzy를 이용하지 않은 VQ/NN과 fuzzy를 이용한 VQ/HMM(hidden Markov model)에 의한 인식률과 비교 실험한다. 실험 결과에 의하며, VQ/NN에 의한 인식률은 92.3%이며, fuzzy를 이용한 VQ/HMM에 의한 인식률은 93.8%이고, fuzzy를 이용한 VQ/Nn에 의한 인식률은 95.7%이다. 그러므로, 본 연구의 fuzzy를 이용한 VQ/NN이 학습 능력이 뛰어난 관계로 fuzzy를 이용한 VQ/HMM과 일반적인 VQ/NN 보다 인식률이 향상됨을 보여준다.
In this paper, we propose the bootstrap and aggregating (bagging) vector quantization (VQ) classifier to improve the performance of the text-independent speaker recognition system. This method generates multiple training data sets by resampling the original training data set, constructs the corresponding VQ classifiers, and then integrates the multiple VQ classifiers into a single classifier by voting. The bagging method has been proven to greatly improve the performance of unstable classifiers. Through two different experiments, this paper shows that the VQ classifier is unstable. In one of these experiments, the bias and variance of a VQ classifier are computed with a waveform database. The variance of the VQ classifier is compared with that of the classification and regression tree (CART) classifier[1]. The variance of the VQ classifier is shown to be as large as that of the CART classifier. The other experiment involves speaker recognition. The speaker recognition rates vary significantly by the minor changes in the training data set. The speaker recognition experiments involving a closed set, text-independent and speaker identification are performed with the TIMIT database to compare the performance of the bagging VQ classifier with that of the conventional VQ classifier. The bagging VQ classifier yields improved performance over the conventional VQ classifier. It also outperforms the conventional VQ classifier in small training data set problems.
본 논문에서는 실시간으로, 문서, 웹 페이지, 블로그, tweet 등 텍스트 정보와 센서, 머신데이터등 IoT의 데이터가 생성되는 상황에서 새로 추가되는 데이터들을 기존에 만들어진 VQ 코드북에 추가시키면서, 기존 VQ 코드북 모델을 실시간으로 갱신하기 위한 온라인 VQ 코드북 생성 방법을 제안한다. 기존에 일괄 작업으로 만들어진 VQ 코드북의 성능을 저하시키지 않으면서, 새로 추가된 데이터를 활용하여 VQ 코드북을 점진적으로 수정하는 방식으로 삼각 부등식을 활용하여 높은 정확도와 속도를 보일 수 있었다. 테스트 데이터에 적용한 결과 일괄 작업과 유사한 성능을 보이면서, 다른 온라인 K-Means 보다 빠른 속도를 보였다.
본 논문에서는 VQ의 문제점인 에지의 열화 문제와 방대한 계산량을 해결하기 위한 새로운 DCT-VQ 방법을 제안한다. 에지 열화를 방지하기 위해 공간 영역에서 VQ를 하지 않고 DCT 변환 영역에서 VQ를 수행한다. DCT는 상관도가 높은 영상 데이타를 비상관화시키고, 적은 수의 계수에 에너지를 집중시키는 특정이 있다. DCT 변환 영역에서,DC 계수는 8비트 균일 스칼라 양자화하고,AC 계수는 에지 성분을 고려하 기 위해 3개 영역으로 구분하여 각 영역을 벡터 양자화한다. VQ의 계산량과 메모리의 절감을 위해 3개 영역의 벡터는 작은 차원($1{\times}7$)으로 구성되며 같은 부호책을 사용한다. 따라서 제안한 방법은 DCT 변환 계수의 고주파 성분올 고려함으로써 에지 성분을 최대한 살렬 수 있고, VQ의 벡터 차원을 줄임에 의해 계산량과 메모리를 크게 감소시킬 수 있다.
본 논문은 AMR-WB+ 코덱의 오디오 품질을 개선하기 위하여 TCX모듈 변환계수 양자화기에 8차 및 16차 Pyramid VQ방식을 제안하였다. 제안된 Pyramid VQ 방식은 AMR-WB+ 코덱에 적용된 $RE_8$ Lattice VQ 방식과 비교 평가되었으며, 8차 및 16차 Pyramid VQ 방식의 사용시 Mean Squared Error (MSE)는 각각 4% 및 5.7% 개선되었고, Perceptual Evaluation of Audio Quality(PEAQ) 값은 각각 3.3% 및 4.7% 개선되었다.
본 논문에서는 표본 적응 프러덕트 양자기(sample-adaptive product quantizer: SAPQ)라 불리는 새로운 기법의 양자기를 불변 길이 출력을 가지며 높은 전송률을 가지는 DPCM(differential pulse coded modulation)에 기초한 영상 데이터 감축에 적용하였다. DPCM의 성능을 개선하기 위해서는 기존의 스칼라 양자기 대신에 벡터 양자기(vector quantizer: VQ)를 사용해야 하는데, 전송률이 증가함에 따라 일반적인 VQ나 심지어 나무 구조를 가지는 변형된 VQ도 부호화 복잡도나 요구되는 기억 장치의 양으로 인하여 그 구현이 거의 불가능하다. SAPQ는 매우 짧은 적응 주기를 가지는 feed-forward 적응 스칼라 양자기로 일종의 제한적 구조를 가지는 VQ의 일종이다. 따라서, 비록 전송률이 높다고 해도, SAPQ를 사용하면 일반 VQ에서의 부호화 복잡도와 요구되는 기억 장치의 양을 줄이면서 VQ의 성능을 얻을 수 있다. 나아가서 SAPQ가 스칼라 양자기 구조를 가지고 있으므로 DPCM 부호기에서 기존의 스칼라 값을 예측하는 예측기를 그대로 사용하면서 SAPQ는 양자화 역할을 수행할 수 있다. 합성 신호와 실제 영상 데이터에 대하여 실험한 결과 DPCM의 양자화 부분?을 바꾸어서 전송률이 4 b/point 이상에서 2-3 dB 정도의 성능 향상을 얻을 수 있었다.
벡터 양자화(vector quantizer:VQ)는 낮은 전송률을 가지는 데이터 압축에 효과적인 방법이나, 가장 큰 단점은 부호화 복잡도로 벡터의 차수와 전송률이 증가함에 따라 기하 급수적으로 증가하게 된다. VQ의 부호화 복잡도 문제를 해결하기 위하여 여러 변형된 VQ 기법이 제안되었어도 전송률이 높은 경우에는 높은 부호화 복잡도와 방대한 양의 부호책 및 훈련 열로 인하여 구현이 거의 불가능하다. 본 논문에서는 특별히 높은 전송률에서, 스칼라 양자기의 구조를 가지며 VQ의 성능을 얻을 수 있는 양자화 기법을 제안하였다. 이 기법은 feed-forward 적응 양자기의 형태를 가지고 있는데, 비교적 짧은 적응 주기를 가지고 있다. 따라서 제안한 양자화 기법을 표본 적응 프로덕트 양자기(sample-adaptive product quantizer: SAPQ)로 부르기로 한다. 그러나 제안된 SAPQ는 m차원의 공간에서 구조적 제한을 가지는 m차원 VQ의 일종으로, 비록 입력 신호가 독립이라고 할지라도 입력 분포에 따라 큰 이득을 얻을 수 있다. 제한한 SAPQ의 성능은 입력 분포에 따라서 Lloyd-Max 양자기에 비하여 약 2∼3dB의 이득을 얻었다.
디지털 신호의 양을 줄이기 위한 손실 소스 부호화에서 양자화는 필수적이다. 이때 보다 효율적인 양자화를 위해서는 벡터양자기(vector quantizer: VQ)를 사용하는데, 벡터의 차수 또는 전송률이 올라감에 따라 VQ의 부호화 복잡도는 기하급수적으로 증가한다. 이를 보완하기 위하여 여러 변형된 VQ가 제안되어 있다. 이러한 변형된 VQ의 일종으로 표본 적응 프로덕트 양자기(sample-adaptive product quantizer: SAPQ)가 있는데, 벡터의 차수를 줄여서 부호화 복잡도를 줄일 수 있는 프로덕트 VQ(product VQ: PQ)와 유사한 구조를 가지지만, 일반 PQ보다 더 좋은 성능을 가지면서 일반 VQ보다는 부호화 복잡도가 낮고 부호책을 위한 메모리의 크기도 작은 일종의 구조적 제한을 가지는 VQ이다. 이러한 SAPQ 중에서 부호책의 구조가 양자화 공간의 대각선에 대칭 형태를 가지는 단순한 형태의 1-SAPQ가 있는데, 이러한 1-SAPQ의 성능은 동일한 분포를 가지며 서로 독립인 입력에 좋은 성능을 보인다. 본 논문에서는 1-SAPQ를 1차 마르코프 과정에 대하여 설계하고 그 성능을 평가하였다. 효율적인 1-SAPQ의 설계를 위하여 초기 부호책 설계 알고리듬을 제안하였으며, 수치해석을 통하여 1-SAPQ는 비슷한 부호화 복잡도를 가지는 VQ보다 좋은 성능을 보임을 보였다. 또한 DPCM(differential pulse coded modulation) 기법에 Lloyd-Max 양자화를 사용한 경우의 성능에 근접함을 보였다.
본 논문에서는 벡터 양자화기와 피라미드 벡터 양자화기를 직렬로 결합하여 16차 벡터 소스에 대한 vector quantizer-pyramid vector quantizer (VQ-PVQ)를 개발하였으며, 예측 구조와 세이프티-넷 (safety-net) 개념을 결합시켜 광대역 음성 부호화기용 LPC 계수 양자화 기를 설계하였다. 본 양자화기의 성능은 AMR-WB(ITRT-T G.722.2)의 LPC양자화기 성능과 비교하였는데, 스펙트럼 왜곡 및 메모리 요구량에서 상당한 이득을 얻었다.
VQ 모델로 구성된 화자인식 시스템의 성능 향상을 위해 Bootstrap 방식을 적용하였다. Bootstrap 및 aggregating방식은 unstable한 모델에서 그 성능이 유효하므로 이의 적용을 위해 먼저 VQ 모델의 bias와 variance를 계산하여 unstable함을 보였다. 화자인식 실험은 TIMIT Database를 사용하여 수행하였고 실험결과 높은 인식율 향상을 확인하였다. 또한 적은 훈련 데이터 환경에서도 좋은 인식율을 갖는 것으로 나타났다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.