High Bit-Rates Quantization of the First-Order Markov Process Based on a Codebook-Constrained Sample-Adaptive Product Quantizers

부호책 제한을 가지는 표본 적응 프로덕트 양자기를 이용한 1차 마르코프 과정의 고 전송률 양자화

  • Kim, Dong-Sik (Department of Electronics Engineering, Hankuk University of Foreign Studies)
  • 김동식 (한국외국어대학교 전자공학과)
  • Received : 2011.04.11
  • Accepted : 2011.09.20
  • Published : 2012.01.25

Abstract

For digital data compression, the quantization is the main part of the lossy source coding. In order to improve the performance of quantization, the vector quantizer(VQ) can be employed. The encoding complexity, however, exponentially increases as the vector dimension or bit rate gets large. Much research has been conducted to alleviate such problems of VQ. Especially for high bit rates, a constrained VQ, which is called the sample-adaptive product quantizer(SAPQ), has been proposed for reducing the hugh encoding complexity of regular VQs. SAPQ has very similar structure as to the product VQ(PQ). However, the quantizer performance can be better than the PQ case. Further, the encoding complexity and the memory requirement for the codebooks are lower than the regular full-search VQ case. Among SAPQs, 1-SAPQ has a simple quantizer structure, where each product codebook is symmetric with respect to the diagonal line in the underlying vector space. It is known that 1-SAPQ shows a good performance for i.i.d. sources. In this paper, a study on designing 1-SAPQ for the first-order Markov process. For an efficient design of 1-SAPQ, an algorithm for the initial codebook is proposed, and through the numerical analysis it is shown that 1-SAPQ shows better quantizer distortion than the VQ case, of which encoding complexity is similar to that of 1-SAPQ, and shows distortions, which are close to that of the DPCM(differential pulse coded modulation) scheme with the Lloyd-Max quantizer.

디지털 신호의 양을 줄이기 위한 손실 소스 부호화에서 양자화는 필수적이다. 이때 보다 효율적인 양자화를 위해서는 벡터양자기(vector quantizer: VQ)를 사용하는데, 벡터의 차수 또는 전송률이 올라감에 따라 VQ의 부호화 복잡도는 기하급수적으로 증가한다. 이를 보완하기 위하여 여러 변형된 VQ가 제안되어 있다. 이러한 변형된 VQ의 일종으로 표본 적응 프로덕트 양자기(sample-adaptive product quantizer: SAPQ)가 있는데, 벡터의 차수를 줄여서 부호화 복잡도를 줄일 수 있는 프로덕트 VQ(product VQ: PQ)와 유사한 구조를 가지지만, 일반 PQ보다 더 좋은 성능을 가지면서 일반 VQ보다는 부호화 복잡도가 낮고 부호책을 위한 메모리의 크기도 작은 일종의 구조적 제한을 가지는 VQ이다. 이러한 SAPQ 중에서 부호책의 구조가 양자화 공간의 대각선에 대칭 형태를 가지는 단순한 형태의 1-SAPQ가 있는데, 이러한 1-SAPQ의 성능은 동일한 분포를 가지며 서로 독립인 입력에 좋은 성능을 보인다. 본 논문에서는 1-SAPQ를 1차 마르코프 과정에 대하여 설계하고 그 성능을 평가하였다. 효율적인 1-SAPQ의 설계를 위하여 초기 부호책 설계 알고리듬을 제안하였으며, 수치해석을 통하여 1-SAPQ는 비슷한 부호화 복잡도를 가지는 VQ보다 좋은 성능을 보임을 보였다. 또한 DPCM(differential pulse coded modulation) 기법에 Lloyd-Max 양자화를 사용한 경우의 성능에 근접함을 보였다.

Keywords

References

  1. A. J. Viterbi and J. K. Omura, Principles of Digital Communication and Coding. McGraw Hill, 1979.
  2. A. Gersho and R. M. Gray, Vector Quantization and Signal Compression. Boston: Kluwer Academic Publishers, 1992.
  3. D. S. Kim and N. B. Shroff, "Quantization based on a novel sample-adaptive product quantizer (SAPQ)," IEEE Trans. Inform. Theory, vol. 45, no. 7, pp. 2306-2320, Nov. 1999. https://doi.org/10.1109/18.796371
  4. D. S. Kim and N. B. Shroff, "Sample-adaptive product quantization: asymptotic analysis and examples," IEEE Trans. Signal Processing, vol. 48, no. 10, pp. 2937-2947, Oct. 2000. https://doi.org/10.1109/78.869051
  5. Z. Raza, F. Alajaji, and T. Linder, "Design of sample adaptive product quantizers for noisy channels," IEEE Trans. Commun., vol. 53, no. 4, pp. 576-580, April 2005. https://doi.org/10.1109/TCOMM.2005.844938
  6. D. S. Kim and Y. Park, "Sample-adaptive product quantizers with affine index assignments for noisy channels," IEICE Trans. Commun., vol. E92-B, no. 10, pp. 3084-3093, Oct. 2009. https://doi.org/10.1587/transcom.E92.B.3084
  7. J. H. Conway and N. J. A. Sloane, "Voronoi regions of lattices, second moments of polytopes, and quantization," IEEE Trans. Inform. Theory, vol. 28, no. 2, pp. 211-226, Mar. 1982. https://doi.org/10.1109/TIT.1982.1056483
  8. J. Max, "Quantizing for minimum distortion," IRE Trans. Inform. Theory, vol. 6, pp.7-12, March 1960. https://doi.org/10.1109/TIT.1960.1057548
  9. 김동식, 이상욱, "표본 적응 프러덕트 양자기에 기초한 DPCM을 이용한 고 전송률 영상 압축," 한국통신학회 논문지, 제 24권, 12B호, pp. 2382-2390, 1999년. 12월.
  10. N. S. Jayant and P. Noll, Digital Coding of Waveforms, NJ: Prentice-Hall, 1984.
  11. D. S. Kim and M. R. Bell, "Upper bounds on empirically optimal quantizers," IEEE Trans. Information Theory, vol. 49, no. 4, pp. 1037-1046, April 2003. https://doi.org/10.1109/TIT.2003.809480