• 제목/요약/키워드: VOF4

검색결과 64건 처리시간 0.031초

Development of Multidirectional Nonlinear Numerical Wave Tank by Naoe-FOAM-SJTU Solver

  • Cao, Hong-Jian;Wan, De-Cheng
    • International Journal of Ocean System Engineering
    • /
    • 제4권1호
    • /
    • pp.49-56
    • /
    • 2014
  • A three-dimensional multidirectional nonlinear numerical wave tank (NWT) based on the Navier-Stokes equations and the Finite Volume Method (FVM) is developed by using the two-phase hydrodynamic flow solver naoe-FOAM-SJTU based on the open source toolbox OpenFOAM. The free surface is capturing with the Volume Of Fluids (VOF). The directional wave including Stokes wave, solitary wave and nonlinear wave are simulated and verified. The multi-directional waves are also simulated with particular wave spectral such as JONSWAP and wave directional spreading function. The obtained numerical results show the capability of the solver to generate different type of multidirectional nonlinear waves accurately. Meanwhile, it implies that the presented NWT can easily extend to model the wave-structures interactions, which will be great help to the offshore structures design.

원통좌표를 이용한 주조공정의 수치해석모델 개발 (Development of a New Simulation Method of Casting Process Based on a Cylindrical Coordinate System)

  • 목진호;박성준;이진호
    • 대한기계학회논문집B
    • /
    • 제28권4호
    • /
    • pp.433-440
    • /
    • 2004
  • Since the numerical analysis was adopted in the mold design, lots of computational methods have been proposed for the simulations of casting processes for the various shaped molds. Today, it is possible to simulate the filling and solidification processes of most casts using the VOF technique. Though the three-dimensional numerical model based on the Cartesian coordinate system can be applied to any shape of cast, it becomes very inefficient when the three-dimensional model is applied to the cast of axi-symmetrical shape since the control volume includes at least 11 of the physical model. In addition, the more meshes should be distributed along the circumferential boundaries of curved shape in the Cartesian coordinate system fur the better results, while such curved circumferential boundary does not need to be considered in the two-dimensional cylindrical coordinate system. This motivates the present study i.e. developing a two-dimensional numerical model for the axi-symmetrically shaped casts. The SIMPLER algorithm, the VOF method, and the equivalent specific heat method have been adopted in the combined algorithm for the flow calculation, the free surface tracking, and the phase change heat transfer, respectively. The numerical model has been applied to the casting process of a pulley, and it was proven that the mesh and time effective calculation was accomplished comparing to the calculation using three-dimensional model.

Second order VOF convection model in curvilinear coordinates

  • Kim, Seong-O.;Hwang, Young-dong;Kim, Young-In.;Chang, Moon-Hee
    • 한국원자력학회:학술대회논문집
    • /
    • 한국원자력학회 1997년도 춘계학술발표회논문집(1)
    • /
    • pp.392-399
    • /
    • 1997
  • An approximation technique was developed for the simulation of free surface flows in non-orthogonal coordinates. The main idea of this approach is to approximate VOF by the second order linear equation in the transformed domain on the assumption that the continuity of free surface would be maintained. The method was justified through a set of numerical test to examine if its original shape could be maintained when the circles are convected in uniform velocity in horizontal direction in curvilinear coordinates. Finally a simple problem was solved by applying the method to CFX4.1 general purpose CFDS code.

  • PDF

3차원 자유표면 유동의 수치 시뮬레이션 (Numerical Simulation of Three Dimensional Free Surface Flow)

  • 강신영
    • 한국해양공학회지
    • /
    • 제4권1호
    • /
    • pp.55-61
    • /
    • 1990
  • For the tracking of three dimensional free surface motions, a method referred to as the Volume of Fluid(VOF) algorithm is extended. In order to calculate the slope of three dimensional free surface which is the most important for the advection algorithm that decides the amount of fluid from cell to cell and for the application of free surface boundary condition, a simple method utilizing two dimensional slope informations is introduced. The extended algroithm is tested by demonstrating the simulation of a propagating sinusoidal wave through the channel whose width changes abruptly.

  • PDF

노즐 형상비에 따른 캐비테이션 및 내부 유동 특성에 관한 수치적 연구 (A Numerical Study on the Characteristics of Cavitation and Internal Flow According to Nozzle Length-to-Diameter Ratio)

  • 한동식;김현규;장영준;전충환
    • 한국분무공학회지
    • /
    • 제13권4호
    • /
    • pp.200-205
    • /
    • 2008
  • Spray formation mechanism was controlled by a cavitation inside an injection nozzle. Nozzle geometry affects spray characteristics and formation behavior, which could determine engine performance and pollutant formation. A study was carried out on the influence of aspect ratio on cavitation inside a nozzle. The cavitation model available in Star-CD code was used to obtain cavitation behavior inside nozzle, which was compared with previous experimental results. In this paper, a CFD approach combining multiphase Volume-of-Fluid(VOF) and k-model was applied. The numerical results are similar with the experimental results.

  • PDF

3차원 범용 유동해석 프로그램의 개발 - CLSVOF 상경계면 추적법의 적용 (Development of a General Purpose Program for 3-D Flows -Implementation of a CLSVOF Interface Tracking Method)

  • 성명호;손기헌;허남건
    • 한국전산유체공학회지
    • /
    • 제7권4호
    • /
    • pp.28-34
    • /
    • 2002
  • A general purpose program for computing 3-D flows has been extended for two-phase flows with topologically complex interfaces. The 3-D interfaces are tracked by employing a coupled level set and volume-of-fluid (CLSVOF) method which not only can calculate an interfacial curvature accurately but also can achieve mass conservation well. The program has been tested through the computations of bubbles rising in a liquid. The numerical results are found to compare well with the results reported in the literature.

고속 활주선 모형 주위의 유동해석 (Flow Analysis around a High-speed Planing Hull Model)

  • 김병남;김우전;유재훈
    • 한국해양공학회지
    • /
    • 제23권4호
    • /
    • pp.38-46
    • /
    • 2009
  • Two sets of numerical simulations were carried out for a planing hull model ship. In the first, the WAVIS 1.4 linear and nonlinear potential solver was utilized with the free support condition, in which the running posture was determined during calculation. The linear and nonlinear potential calculation results showed qualitative agreement in the trim and resistance coefficient with the MOERI towing tank test. However, the nonlinear potential calculation gave better results than the linear method. In the next simulation, Fluent 6.3.26 with a VOF model and the WAVIS 1.4 nonlinear potential solver were used with the given running posture from the measurement carried out in the MOERI towing tank. Fluent with the VOF method had substantially better agreement with model test results than the results from the WAVIS nonlinear potential calculation for the total resistance coefficient, and for the bow and stern wave patterns, in spite of the much greater computational costs. Both methods can be utilized in planing hull design when their limitations are perceived, and the running posture should be predicted correctly.

곡률이 있는 모서리 주변에서의 액막 거동에 대한 수치해석적 연구 (A NUMERICAL ANALYSIS ON THE BEHAVIOR OF LIQUID FILM AROUND A CURVED EDGE)

  • 이건강;허남건;손기헌
    • 한국전산유체공학회지
    • /
    • 제17권4호
    • /
    • pp.75-80
    • /
    • 2012
  • Due to the effect of surface tension, liquid film around a curved edge of solid surface moves from the corner to the flat surface. During this behavior of liquid film, film sagging phenomenon is easily occurred at the solid surface. Behavior of liquid film is determined with the effects of the properties of liquid film and the geometric factors of solid surface. In the present study, 2-D transient CFD simulations were conducted on the behavior of liquid film around a curved edge. The two-phase interfacial flow of liquid film was numerically investigated by using a VOF method in order to predict the film sagging around a curved edge. In the steady state of behavior of liquid film, the liquid film thickness of numerical result showed a good agreement with experimental data. After verifying the numerical results, the characteristics of behavior of liquid film were numerically analyzed with various properties of liquid film such as surface tension coefficient and viscosity. The effects of geometric factors on film sagging were also investigated to reduce the film sagging around a curved edge.

압축공기로 움직이는 관 내부 수중 이동물체의 거동에 미치는 물의 압축성 영향 (The Effect of Water Compressibility on a Rigid Body Movement in a Water-filled Duct Driven by Compressed Air)

  • 박찬욱;이승수
    • 대한조선학회논문집
    • /
    • 제45권4호
    • /
    • pp.345-352
    • /
    • 2008
  • The motion of a projectile initiated by the release of highly pressurized air is simulated presuming the flow field as a two dimensional one. The effects of water compressibility on projectile movements are investigated, comparing results based on the Fluent VOF model where water is treated as an incompressible medium with those from the presently developed VOF scheme. The present model considers compressibility of both air and water. The Fluent results show that the body moves farther and at higher speeds than the present ones. As time proceeds, the relative difference of speed and displacement between the two results drops substantially, after acoustic waves in water traverse and return the full length of the tube several times. To estimate instantaneous accelerations, however, requires implementation of the water compressibility effect as discrepancies between them do not decrease even after several pressure wave cycles.

Preliminary numerical study of single bubble dynamics in swirl flow using volume of fluid method

  • Li, Zhongchun;Qiu, Zhifang;Du, Sijia;Ding, Shuhua;Bao, Hui;Song, Xiaoming;Deng, Jian
    • Nuclear Engineering and Technology
    • /
    • 제53권4호
    • /
    • pp.1119-1126
    • /
    • 2021
  • Spacer grid with mixing vane had been widely used in nuclear reactor core. One of the main feather of spacer grid with mixing vane was that strong swirl flow was formed after the spacer grid. The swirl flow not only changed the bubble generation in the near wall field, but also affected the bubble behaviors in the center region of the subchannel. The interaction between bubble and the swirl flow was one of the basic phenomena for the two phase flow modeling in fuel assembly. To obatin better understanding on the bubble behaviors in swirl flow, full three dimension numerical simulations were conducted in the present paper. The swirl flow was assumed in the cylindral calculation domain. The bubble interface was captured by Volume Of Fluid (VOF) method. The properties of saturated water and steam at different pressure were applied in the simulation. The bubble trajectory, motion, shape and force were obtained based on the bubble parameters captured by VOF. The simulation cases in the present study included single bubble with different size, at different angular velocity conditions and at different pressure conditions. The results indicated that bubble migrated to the center in swirl flow with spiral motion type. The lateral migration was mainly related to shear stress magnitude and bubble size. The bubble moved toward the center with high velocity when the swirl magnitude was high. The largest bubble had the highest lateral migration velocity in the present study range. The effect of pressure was small when bubble size was the same. The prelimenery simulation result would be beneficial for better understanding complex two phase flow phenomena in fuel assembly with spacer grid.