Development of a General Purpose Program for 3-D Flows -Implementation of a CLSVOF Interface Tracking Method

3차원 범용 유동해석 프로그램의 개발 - CLSVOF 상경계면 추적법의 적용

  • 성명호 (서강대학교 대학원 기계공학과) ;
  • 손기헌 (서강대학교 기계공학과) ;
  • 허남건 (서강대학교 기계공학과)
  • Published : 2002.12.01

Abstract

A general purpose program for computing 3-D flows has been extended for two-phase flows with topologically complex interfaces. The 3-D interfaces are tracked by employing a coupled level set and volume-of-fluid (CLSVOF) method which not only can calculate an interfacial curvature accurately but also can achieve mass conservation well. The program has been tested through the computations of bubbles rising in a liquid. The numerical results are found to compare well with the results reported in the literature.

Keywords

References

  1. 허남건, 조원국, 윤성영, 김광호, '일반 비직교 좌표계를 사용하는 3차원 범용 유동해석 프로그램의 개발,' 대한기계학회논문집, 18권 (1994), pp.3345-3356
  2. 허남건, 김성원, 'Spiral Tube 내에서의 3차원 유동해석,' 한국전산유체공학회지, 4권(1999), pp.27-33
  3. 허남건, 김욱, 'MIRA Model 후미의 저저항최적설계,' 한국전산유체공학회지, 4권 (1999), pp.34-40
  4. 김태균, 김욱, 허남건, '유체 . 구조물 상호작용 기법을 이용한 오일 펜스의 변형 예측,' 한국전산유체공학회지, 4권 (2000), pp.16-22
  5. STAR-CD, version 3.10 Manual, Computational Dynamics LTD., (1999)
  6. Hirt, C.W. and Nichols, B.D., 'Volumeof Fluid (VOF) Method for the Dynamicsof Free Boundaries,' J. Comput. Phys.,Vo1.39 (1981), pp.201-225
  7. Sussman, M., Smereka, P. and Osher, S.,'A Level Set Approach for ComputingSolution to Incompressible Two-PhaseFlow,' J. Comput. Phys., Vo1.114 (1994),pp.146-159
  8. Sussman, M. and Puckett, E.G., 'ACoupled Level Set and Volume-of-FluidMethod for Computing 3D andAxisymmetric Incompressible Two-PhaseFlows,' J. Comput. Phys., Vo1.162(2000), pp.301-337
  9. Brackbill, J.U., Kothe, D.B. and Zemach,C., 'A Continuum Method for Modeling Surface Tension,' J. Comput. Phys., Vol.110 (1992), pp.335-354
  10. Ryskin, G. and Leal, L. G., 'NumehcalSolution of Free-Boundary Problems inFluid Mechanics, Part l,' J. Fluid Mech.Vo1.148 (1984), pp.1-17
  11. Ryskin G. and Leal, L.G., 'NumericalSolution of Free-Boundary Problems inFluid Mechanics, Part 2' J. Fluid Mech.,Vo1.148 (1984), pp.19-35