• 제목/요약/키워드: VOF scheme

검색결과 53건 처리시간 0.022초

개선된 HRIC VOF 법에 의한 자유수면 유동해석 (Numerical Simulation of Free Surface Flow Using a Refined HRIC VOF Method)

  • 박일룡;김광수;김진;반석호
    • 대한조선학회논문집
    • /
    • 제47권3호
    • /
    • pp.279-290
    • /
    • 2010
  • In this paper, a VOF method called RHRIC (refined high resolution intertace capturing) is introduced for solving the motion of the free surface and applied to the simulation of the advection of rigid interiaces of different shapes and a 20 dam-break problem, which are typical benchmark test cases. The numerical results for the interface advection cases are compared to the analytic solutions, while the available experimental data and other numerical results of various free surface methods for the dam-break problem are provided for the validation of the proposed VOF method. The same simulations were also carried out using the original HRIC scheme and a modified HRIC scheme called MHRIC for comparison. Although the RHRIC uses a simple order scheme, a basis of the original HRIC scheme, lower than the third-order ULTIMATE-QUICKEST used by the MHRIC, it provides an improved accuracy over the two previous HRIC methods.

하이브리드 기법을 이용한 고정된 해양구조물에 작용하는 파랑하중에 관한 수치 시뮬레이션 (Numerical Simulation of Wave Forces acting on Fixed Offshore Structures Using Hybrid Scheme)

  • 남보우;홍사영;김용환
    • 한국해양공학회지
    • /
    • 제24권6호
    • /
    • pp.16-22
    • /
    • 2010
  • In this paper, the diffraction problems for fixed offshore structures are solved using a hybrid scheme. In this hybrid scheme, potential-based solutions and the Navier-Stokes-based finite volume method (FVM) with a volume-of-fluid (VOF) method are combined. We introduce a buffer zone for efficient wave-making and damping. In this buffer zone, the near field solution from FVM-VOF is gradually changed to Stokes' 2nd order wave solutions. Three different models, including the truncated cylinder, sphere, and wigleyIII model, are numerically investigated in regular waves with a wave steepness of 1/30. The efficiency and accuracy of the hybrid scheme are numerically validated from results using different domain sizes and buffer zones. The wave exciting forces from the FVM-VOF simulations are compared with experiments and potential-based solutions from the higher-order boundary element method (HOBEM). This comparison shows good agreement between the hybrid scheme and potential-based solutions.

Numerical Simulation of Mold Filling Processes of Castings by using of Predictor-two step Corrector-VOF

  • Xun, Sun;Junqing, Wang;Hwang, Ho-Young;Choi, Jeong-Kil
    • 한국주조공학회지
    • /
    • 제22권6호
    • /
    • pp.299-303
    • /
    • 2002
  • 수정된 SIMPLE법과 VOF의 결합으로 predictor-two step corrector-VOF라고 불리는 새로운 알고리즘이 주조 시 용탕 충전과정을 해석하기 위해 개발되었다. 운동량보존으로부터 유도된 새 2단계 속도 경계조건 처리법은 용탕의 자유표면을 추적하는 데 사용되었다. 본 연구에서는 2개의 예제 계산을 통해 계산정확도와 속도에 대한 Courant 수의 영향을 살펴보았다. 그 결과 적당한 Courant 수의 증가는 계산 정확도의 감소 없이 용탕 계산 속도를 향상시킬 수 있는 것으로 나타났다. 또한 만족할 만한 계산 정확도와 효율이 이 알고리즘의 실제 제품 해석을 통해 얻어졌다.

VOF법의 자유수면 포착정도 향상을 위한 연구 (A Study on a VOF Method for Improved Free Surface Capturing)

  • 박일룡;김우전;김진;반석호
    • 한국전산유체공학회:학술대회논문집
    • /
    • 한국전산유체공학회 2005년도 춘계 학술대회논문집
    • /
    • pp.202-206
    • /
    • 2005
  • A new numerical scheme for two-phase flows, the Hybrid VOF method has been developed for improved free surface capturing. The present new method is a volume capturing based VOF method coupled with a reinitialization procedure of a Level-set method. For validation, the proposed method is applied to two test cases: spherical bubble rising and dam breaking. The calculated results by using the Hybrid VOF method with the two previously applied VOF formulations are compared with available numerical and experimental data. It is found that the new method provides more accurate results than the two previous ones.

  • PDF

VOF 법의 자유수면 포착정도 향상을 위한 연구 (A Study on a VOF Method for the Improvement of Free Surface Capturing)

  • 박일룡;김우전;김진;반석호
    • 대한조선학회논문집
    • /
    • 제42권2호
    • /
    • pp.88-97
    • /
    • 2005
  • A new numerical scheme solving two-phase flow, the Hybrid VOF method for improved free surface capturing has been developed by combining a volume capturing VOF method with the Level-Set reinitialization procedure. For validation, the proposed method is applied to 3-D bubble rising problem, dam breaking and the free surface flow around a commercial container ship. The calculated results by using the Hybrid VOF method with the two previously applied VOF formulations are compared with available numerical and experimental data. It is found that the new method provides more reasonable results than the two previous ones.

자유 표면이 존재하는 유체 유동 해석을 위한 VOF 방법 기반의 새로운 수치 기법(II)-캐비터 충전 문제와 슬로싱 문제에의 응용- (A New VOF-based Numerical Scheme for the Simulation of Fluid Flow with Free Surface(II)-New Free Surface Tracking Algorithm and Its Verification-)

  • 김민수;박종선;이우일
    • 대한기계학회논문집B
    • /
    • 제24권12호
    • /
    • pp.1570-1579
    • /
    • 2000
  • Finite element analysis of fluid flow with moving free surface has been carried out in two and tree dimensions. The new VOF-based numerical algorithm that has been proposed by the present authors was applied to several 2-D and 3-D free surface flow problems. The proposed free surface tracking scheme is based on two numerical tools that have been newly introduced by the present authots; the orientation vector to represent the free surface orientation in each cell and the baby-cell to determine the fluid volume flux at each cell boundary. The proposed numerical algorithm has been applied to 2-D and 3-D cavity filling and sloshing problems, which demonstrated versatility and effectiveness of the new free surface tracking scheme as well as the overall solution procedure. The proposed numerical algorithm resolved successfully the interacting free surface with each other. The simulated results demonstrated the applicability of proposed numerical algorithm to the practical problems of large free surface motion. Also, it has been demonstrated that the proposed free surface tracking scheme can be easily implemented in any irregular non-uniform grid systems and can be extended to the 3-D free surface flow problem without additional efforts.

자유 표면이 존재하는 유체 유동 해석을 위한 VOF방법의 기반의 새로운 수치 기법(I)-새로운 자유 표면 추적 알고리즘 및 검증- (A New VOF-based Numerical Scheme for the Simulation of Fluid Flow with Free Surface(I)-New Free Surface Tracking Algorithm and Its Verification-)

  • 김민수;신수호;이우일
    • 대한기계학회논문집B
    • /
    • 제24권12호
    • /
    • pp.1555-1569
    • /
    • 2000
  • Numerical simulation of fluid flow with moving free surface has been carried out. For the free surface flow, a VOF(Volume of Fluid)-based algorithm utilizing a fixed grid system has been investigated. In order to reduce numerical smearing at the free surface represented on a fixed grid system, a new free surface tracking algorithm based on the donor-acceptor scheme has been presented. Novel features of the proposed algorithm are characterized as two numerical tools; the orientation vector to represent the free surface orientation in each cell and the baby-cell to determine the fluid volume flux at each cell boundary. The proposed algorithm can be easily implemented in any irregular non-uniform grid systems that are usual in finite element method (FEM). Moreover, the proposed algorithm can be extended and applied to the 3-D free surface flow problem without additional efforts. For computation of unsteady incompressible flow, a finite element approximation based on the explicit fractional step method has been adopted. In addition, the SUPG(streamline upwind/Petrov-Galerkin) method has been implemented to deal with convection dominated flows. Combination of the proposed free surface tracking scheme and explicit fractional step formulation resulted in an efficient solution algorithm. Validity of the present solution algorithm was demonstrated from its application to the broken dam and the solitary wave propagation problems.

Level Set 방법과 결합된 VOF 기반의 경계면 추적법 (An Interface Tracking Scheme based on VOF Coupled with Level Set Method)

  • 서영호;손기헌
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2001년도 춘계학술대회논문집E
    • /
    • pp.113-118
    • /
    • 2001
  • We present a new interface tracking method for computing two-phase flow. This method is based on VOF method coupled with Level set method. The method is verified to calculate an interfacial curvature accurately as well as to achieve volume conservation during the whole computation period. We apply the present method to calculate a falling drop. The calculated shape and terminal velocity of the falling drop showed good agreement with the data reported in the literature. Also, the present method was proven to be applicable to drop-wall collision phenomenon.

  • PDF

VOF 방법에 의한 이동하는 자유표면이 존재하는 유동의 유한요소 해석 (Finite element analysis of flow with moving free surface by volume of fluid method)

  • 신수호;이우일
    • 대한기계학회논문집B
    • /
    • 제21권9호
    • /
    • pp.1230-1243
    • /
    • 1997
  • A numerical technique for simulating incompressible viscous flow with free surface is presented. The flow field is obtained by penalty finite element formulation. In this work, a modified volume of fluid (VOF) method which is compatible with 4-node element is proposed to track the moving free surface. This scheme can be applied to irregular mesh system, and can be easily extended to three dimensional geometries. Numerical analyses were done for two benchmark examples, namely the broken dam problem and the solitary wave propagation problem. The numerical results were in close agreement with the existing data. Illustrative examples were studied to show the effectiveness of the proposed numerical scheme.

Flood Impact Pressure Analysis of Vertical Wall Structures using PLIC-VOF Method with Lagrangian Advection Algorithm

  • Phan, Hoang-Nam;Lee, Jee-Ho
    • 한국전산구조공학회논문집
    • /
    • 제23권6호
    • /
    • pp.675-682
    • /
    • 2010
  • The flood impact pressure acting on a vertical wall resulting from a dam-breaking problem is simulated using a navier-Stokes(N-S) solver. The N-S solver uses Eulerian Finite Volume Method(FVM) along with Volume Of Fluid(VOF) method for 2-D incompressible free surface flows. A Split Lagrangian Advection(SLA) scheme for VOF method is implemented in this paper. The SLA scheme is developed based on an algorithm of Piecewise Linear Interface Calculation(PLIC). The coupling between the continuity and momentum equations is affected by using a well-known Semi-Implicit Method for Pressure-Linked Equations (SIMPLE) algorithm. Several two-dimensional numerical simulations of the dam-breaking problem are presented to validate the accuracy and demonstrate the capability of the present algorithm. The significance of the time step and grid resolution are also discussed. The computational results are compared with experimental data and with computations by other numerical methods. The results showed a favorable agreement of water impact pressure as well as the global fluid motion.