• 제목/요약/키워드: VOCs analysis

Search Result 328, Processing Time 0.328 seconds

VOCs Emission Characteristics and Mass Contribution Analysis at Wanju Industrial Area (완주지역의 VOCs 배출특성에 따른 공단지역과 일반지역의 기여도 분석)

  • Kim, Deug-Soo;Yang, Go-Soo;Park, Bi-O
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.24 no.5
    • /
    • pp.562-573
    • /
    • 2008
  • Concentrations of volatile organic compounds (VOCs) measured from the local industrial sources in Wanju industrial complex during June $2007{\sim}January$ 2008. The samples were collected from the primary sources (6 emission points) in 4 major factories in Wanju industrial complex as well as two general sources in Wanju County to elucidate the abundances of speciated VOCs and their spacial and temporal distributions depending on source bases. Industrial sources are as follows; fabricated metal manufacture, motor vehicle manufacture, rubber and plastic manufacture, and chemical manufacture factories. Two general source samples were collected from gasoline gas station and dry cleaning shop in urban area. In order to understand the near source influence at receptor, samples from the two receptor sites (one is at center of the industrial complex and the other site is at distance residential area downwind from the center) were collected with sample canister, and analyzed by using GC/MSD. The concentrations from different sources were compared and discussed. The mass contributions of the speciated VOCs to total VOCs measured from industrial sources and ambient ai r at two receptors were presented and discussed.

Analysis of VOCs Produced from Incineration of Plastic Wastes Using a Small- Electric Furnace (소형전기로를 이용한 플라스틱류 소각시 발생하는 VOCs 농도분석)

  • Lee Byeong-Kyu;Kim Haengah
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.20 no.6
    • /
    • pp.759-771
    • /
    • 2004
  • This study analyzed concentrations of volatile organic compounds (VOCs) produced from incineration of plastic wastes at $600^{\circ}C$. The plastic wastes used in this study included polyethyleneterephthlate (PETE), high density polyethylene (HOPE), polyvinyl chloride (PVC), low density polyethylene (LOPE), polypropylene (PP), polystyrene (PS) and other. Plastic wastes were heated from room temperature upto $600^{\circ}C$ providing the compressed air inside of a small-scale electric furnace for 90 minutes and then they were oxidized (incinerated) for 60 minutes at $600^{\circ}C$ maintaining the same air supply. VOCs emitted from the incineration process were sampled using an air sampling pump and Tedlar air bags for 150 minutes and then the components and concentrations of the VOCs were analyzed by a GC-MS. The most prominent chemical structure of the VOCs obtained from the incineration process of the HOPE, LOPE and PP, which include ethylene groups in their main chains, was identified as aliphatic hydrocarbons such as 1-hexene. However, aromatics such as benzene were major chemical structure from the incineration of PETE, PVC and PS which include benzene rings in their main chains. This study estimated the total VOC production from the incineration of the plastic wastes based on the real plastic waste production and the emission factors. 64% and 27% of the total VOC emissions consisted of aliphatic hydrocarbons and aromatics, respectively, which have double bonds within their molecular structure and thus a high ground level ozone formation potential.

Oxidation characterization of VOCs over noble metal catalyst using water treatment (Water 수처리를 이용한 귀금속 촉매의 VOCs 산화특성)

  • Kim, Moon-Chan
    • Analytical Science and Technology
    • /
    • v.18 no.2
    • /
    • pp.120-129
    • /
    • 2005
  • Volatile organic compounds (VOCs) have been recognized as major contributor to air pollution. The catalytic oxidationis is one of the most important processes for VOCs destruction due to the possibility getting high efficiency at low temperature. In this study, monometallic Pt, Ir and bimetallic Pt-Ir were supported to $TiO_2$. In order to distribute metals uniformly, $H_2O-H_2$ treatment method was used. Xylene, toluene and MEK were used as reactants. The monometallic or bimetallic catalysts were prepared by the excess wetness impregnation method and characterized by XRD, XPS, and TEM analysis. Pt catalyst showed higher conversion than Ir catalyst and Pt-Ir bimetallic catalyst showed the highest conversion. The catalysts prepared by $H_2O-H_2$ treatment had better VOC's conversion than that of nothing treatment. In the VOCs oxidation, Pt-Ir bimetallic catalysts had multipoint active sites, so it improved the range of Pt metal state. Therefore, bimetallic catalysts showed higher conversion of VOCs than monometallic ones. $H_2O-H_2$ treatment effected an uniform distribution of Pt particles. In VOCs oxidation was found to follow first order reaetion kinetics. The activation energy of $H_2O-H_2$ treatment catalysts was lower than that of untreated ones. In this study, the a small amount of Ir was used with Pt to promote the oxidation conversion of VOCs.

The Development of the VOCs Measurement System using Sensor Array (센서 어레이를 이용한 휘발성유기화합물 측정기기 개발)

  • Hong Chol-Ho;Kim Dong-Jin;Lee Jang-Hun;Kwon Hyuk-Ku
    • Environmental Analysis Health and Toxicology
    • /
    • v.19 no.1
    • /
    • pp.41-47
    • /
    • 2004
  • Air quality monitoring is a primary activity for industrial and social environment. The government push for pollutants that must be monitored. Especially, the VOCs (Volatile Organic Compounds), which are very harmful for human and environment, should be controlled under the government policy. We have been developed a VOCs measurement system which recognize various kinds and quantities of VOCs, such as benzene, toluene, and xylene (BTX). Especially, we designed sensor array with various kinds of gas sensor and ANN (Artificial Neural Network) algorithm. The measured values for BTX have errors of-4ppm.

Engineering Analysis of Biofilter (바이오필터의 공학적 해석)

  • 김인호;최호석
    • KSBB Journal
    • /
    • v.17 no.2
    • /
    • pp.115-120
    • /
    • 2002
  • Biofiltration is a bioprocess treating volatile organic compounds (VOCs) in order to convert the VOCs to harmless products. This review on biofiltration is intended to provide an engineering concept such as removal efficiency, maximum load, elimination capacity and so on. Besides, modeling concept of biofilter is also supplied for designing biofilter system. Quantitative data generated in our research group is shown to explain the engineering concept as well as the modeling idea.

Removal Characteristics and Mass Balance Analysis of Mixed VOCs in Trickle Bed Air Biofilter Using Backwashing Operation (역세척공정을 이용한 Trickle Bed Air Biofilter의 혼합VOCs 분해특성 및 물질수지 고찰)

  • Kim, Dae-Keun;Sorial, George A.
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.25 no.6
    • /
    • pp.503-511
    • /
    • 2009
  • VOC mixture was fed to a trickle bed air biofilter (TBAB) with step-change in influent mixture concentrations from 50 ppmv to 1,000 ppmv, corresponding to loadings of $5.7\;g/m^3/hr$ to $114.1\;g/m^3/hr$. VOC mixture was an equimolar ratio of two aromatic VOCs, i.e., toluene and styrene, and two oxygenated VOCs, i.e., methyl ethyl ketone (MEK) and methyl isobutyl ketone (MIBK). The TBAB system employed backwashing as biomass control. The experimental results showed that a critical loading rate for VOC mixture removal was determined to be about $60\;g/m^3/hr$, and critical loading rates for individual VOCs in the mixture were different. Specifically, toluene content in the mixture played a major role in the biofilter overall performance. As VOC mixture was fed beyond the critical loading rate, reacclimation of the biofilter to reach the 99% removal efficiency following backwashing was delayed, which was a critical factor in the biofilter performance. In the mass balance analysis, 63.8% of the carbon equivalent in VOCs removal was used for $CO_2$ production during the experimental runs. The 82.6% nitrogen utilized in the biofilter was contributed to microbial cell synthesis. The obtained results were compared against consistently high efficient performance of TBAB for VOC mixture by employing backwashing as biomass control.

Evaluation of Methodology for the Measurement of VOCs in the Air by Adsorbent Sampling and Thermal Desorption with GC Analysis (흡착포집 및 열탈착/GC 분석에 의한 공기 중 휘발성 유기화합물의 측정방법론 평가)

  • 백성옥;황승만;박상곤;전선주;김병주;허귀석
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.15 no.2
    • /
    • pp.121-138
    • /
    • 1999
  • This study was carried out to evaluate the performance of a sampling and analytical methodology for the measurement of selected volatile organic compounds (VOCs) in the ambient air. VOCs were determined by the adsorbent tube sampling and automatic thermal desorption coupled with GC/FID and GC/MSD analysis. Target analytes were aromatic VOCs, including BTEX, 1,3,5-and 1,2,4,-trimethylbenzenes(TMBs), and naphthalene. The methodology was investigatedwith a wide range of performance criteria such as repeatability, linearity, lower detection limits, collection efficiency, thermal conditioning, breakthrough volume and calibration methods using internal and external standards. standards. Stability of samples collected on adsorbent tubes during storage was also investigated. In addition, the sampling and analytical method developed during this study was applied to real samples duplicately collected in various indoor and outdoor environments. Precisions for the duplicate samples and distributed volume samples appeared to be well comparable with the performance criteria recommended by USEPA TO-17. The audit accuracy was estimated by inter-lab comparison of both duplicate samples and standard materials between the two independent labs. The overall precision and accuracy of the method were estimated to be within 30% for major aromatic VOCs such as BTEX. This study demonstrated that the adsorbent sampling and thermal desorption method can be reliably applied for the measurement of BTEX in ppb levels frequently occurred in common indoor and ambient environments.

  • PDF

The study for VOCs analysis in long path by open path FT-IR spectrometer (Open path FT-IR spectrometer를 사용한 원거리의 VOCs 측정에 관한 연구)

  • Cho, Nam Wook;Cho, Won Bo;Kim, Hyo Jin
    • Analytical Science and Technology
    • /
    • v.27 no.2
    • /
    • pp.108-113
    • /
    • 2014
  • The harmful materials as volatile organic compounds (VOCS) that is easy for gas to be changed from liquid on ambient temperature, those should be controlled by Korea Chemicals Management Association. The VOCs samples should be collected directly in place so that those could be analyzed. Generally but it couldn't avoid to have the risk of analyst. Moreover, if there is the place limited to entrance, it is impossible to collect directly and measure. Owing to such problem, it tried to be solved by open path FT-IR spectrometer that could be studied on the combustion gases within long path and VOCs samples were tried to measure to large volume by remote and real time. Firstly, it was to investigate optimized measured length between the system and benzene sample of VOCs. As result, The optimized measured length was confirmed with 15 meter length and the qualitative analysis could be measured on seven VOC samples. The calibration curve as quantitative analysis of benzene samples could be worked. On the basis of the result, the system as remote monitor could show to have potentiality.