• 제목/요약/키워드: VIS Spectroscopy Analysis

검색결과 199건 처리시간 0.026초

The Influence of Firing Conditions on the Color Properties of Pr-ZrSiO4 Pigments Synthesized Using Rice Husk Ash

  • Pyon, Kyu-Ri;Lee, Byung-Ha
    • 한국세라믹학회지
    • /
    • 제46권4호
    • /
    • pp.397-404
    • /
    • 2009
  • Using rice husk ash as silica, the influence of the firing temperature and holding time on the color intensity of Pr-$ZrSiO_4$ pigments were investigated. The Pr-yellow pigments were calcined at 500, 700, 800, 900, 950, 1000, $1100^{\circ}C$ in a ceramic method. The synthesized pigments were characterized by DT-TG thermal analysis, X-ray diffraction, UV-Vis spectroscopy, and SEMEDAX analysis. The relationship between the zircon phase-formation growth and Pr-yellow color development was evaluated and the optimum firing conditions were determined. The color of the pigment samples was characterized on the grounds of the Commission Internationale de l'Eclairage (CIE) standard procedure (CIE $L^*a^*b^*$ measurement) after an application on the bisque ceramic tile.

A Review: Synthesis and characterization of metals complexes with paracetamol drug

  • AL-Ayash, Salam R;AL-Noor, Taghreed H
    • 분석과학
    • /
    • 제35권4호
    • /
    • pp.143-152
    • /
    • 2022
  • In this review, previous studies on the synthesis and characterization of the metal Complexes with paracetamol by elemental analysis, thermal analysis, (IR, NMR and UV-Vis (spectroscopy and conductivity. In reviewing these studies, the authors found that paracetamol can be coordinated through the pair of electrons on the hydroxyl O-atom, carbonyl O-atom, and N-atom of the amide group. If the paracetamol was a monodentate ligand, it will be coordinated by one of the following atoms O-hydroxyl, O-carbonyl or N-amide. But if the paracetamol was bidentate, it is coordinated by atoms (O-carbonyl and N-amide), (O-hydroxyl and N-amide) or (O-carbonyl and O-hydroxyl). The authors also found that free paracetamol and its complexes have antimicrobial activity.

A facile chemical synthesis of a novel photo catalyst: SWCNT/titania nanocomposite

  • Paul, Rima;Kumbhakar, Pathik;Mitra, Apurba K.
    • Advances in nano research
    • /
    • 제1권2호
    • /
    • pp.71-82
    • /
    • 2013
  • A simple chemical precipitation technique is reported for the synthesis of a hybrid nanostructure of single-wall carbon nanotubes (SWCNT) and titania ($TiO_2$) nanocrystals of average size 5 nm, which may be useful as a prominent photocatalytic material with improved functionality. The synthesized hybrid structure has been characterized by transmission electron microscopy (HRTEM), energy-dispersive X-ray analysis (EDAX), powder X-ray diffractometry (XRD), Fourier transform infrared spectroscopy (FTIR) and Raman spectroscopy. It is clearly revealed that nearly monodispersed titania nanocrystals (anatase phase) of average size 5 nm decorate the surfaces of SWCNT bundles. The UV-vis absorption study shows a blue shift of 16 nm in the absorbance peak position of the composite material compared to the unmodified SWCNTs. The photoluminescence study shows a violet-blue emission in the range of 325-500 nm with a peak emission at 400 nm. The low temperature electrical transport property of the synthesized nanomaterial has been studied between 77-300 K. The DC conductivity shows semiconductor-like characteristics with conductivity increasing sharply with temperature in the range of 175-300 K. Such nanocomposites may find wide applications as improved photocatalyst due to transfer of photo-ejected electrons from $TiO_2$ to SWCNT, thus reducing recombination, with the SWCNT scaffold providing a firm and better positioning of the catalytic material.

환원된 산화그래핀/젤라틴 복합필름의 합성과 분석 (Synthesis and Characterization of Reduced Graphene Oxide/Gelatin Composite Films)

  • Chen, Guangxin;Qiao, Congde;Xu, Jing;Yao, Jinshui
    • 폴리머
    • /
    • 제38권4호
    • /
    • pp.484-490
    • /
    • 2014
  • Reduced graphene oxide (RGO) was fabricated using gelatin as a reductant, and it could be stably dispersed in gelatin solution without aggregation. A series of RGO/gelatin composite films with various RGO contents were prepared by a solution-casting method. The structure and thermal properties of the RGO/gelatin composite films were characterized by UV-vis spectroscopy, Fourier transform infrared (FTIR) spectroscopy, X-ray diffraction (XRD), atomic force microscopy (AFM), scanning electron microscopy (SEM), differential scanning calorimeter (DSC) and thermal gravimetric analysis (TGA). The addition of RGO enhances the degree of crosslinking of gelatin films and decreases the swelling ability of the gelatin films in water, indicating that RGO/gelatin composite films have a better wet stability than gelatin films. The glass transition temperature ($T_g$) of gelatin films is also increased with the incorporation of RGO. The presence of RGO slightly increases the degradation temperature of gelatin films due to the very low content of RGO in the composite films. Since gelatin is a natural and nontoxic biomacromolecule, the RGO/gelatin composite films are expected to have potential applications in the biomedical field.

Al-doped Uvarovite 안료의 합성과 특성 (Synthesis and Characterization of Al-doped Uvarovite Green Pigments)

  • 서성규;이병하
    • 한국세라믹학회지
    • /
    • 제47권6호
    • /
    • pp.608-612
    • /
    • 2010
  • Uvarovite Garnet is green pigment prepared by using $Cr_2O_3$, CaO and $SiO_2$ which are widely used in ceramic industry. The synthesis of above pigment was carried out by mixing $K_2Cr_2O_7$, $SiO_2$ and $CaCO_3$ as formulated and then firing at $1000{\sim}1200^{\circ}C$. To investigate the optimum synthesis condition of the Uvarovite Garnet. it was prepared by using CaO to replace $CaCO_3$, $CaF_2$ and $CaCl_2$. To get green brighter color, $Al^{3+}$ was substituted for $Cr^{3+}$. They were characterized by X-ray diffraction, UV-Vis spectroscopy, Raman spectroscopy and SEM analysis. When the pigments were applied to lime glazes (6 wt%), color parameters of Uvarovite Garnet showed the $L^*$=40.99, $a^*$=-16.23 and $b^*$=17.04.

Fabrication of Organic-Inorganic Nano Hybrid Superlattice Thin Films by Molecular Layer Deposition

  • Cho, Bo-Ram;Yang, Da-Som;Sung, Myung-M.
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2011년도 제40회 동계학술대회 초록집
    • /
    • pp.115-115
    • /
    • 2011
  • Nano hybrid superlattices consisting of organic and inorganic components have great potential for creation of new types of functional material by utilizing the wide variety of properties which differ from their constituents. They provide the opportunity for developing new materials with new useful properties. Herein, we fabricated new type of organic-inorganic nano hybrid superlattice thin films by a sequential, self-limiting surface chemistry process known as molecular layer depostion (MLD) combined with atomic layer deposition (ALD). An organic layer was formed at $150^{\circ}C$ using MLD with repeated sequintial adsorption of Hydroquinone and Titanium tetrachloride. A $TiO_2$ inorganic nanolayer was deposited at the same temperature using ALD with alternating surface-saturating reactions of Titanium tetrachloride and water. Using UV-Vis spectroscopy, we confirmed visible light absorption by LMCT. And FTIR spectroscopy and XPS were employed to determine the chemical composition. Ellipsometry and TEM analysis were also used to confirm linear growth of the film versus number of MLD cycles at all same temperature. In addition, p-n junction diodes domonstrated in this study suggest that the film can be suitable for n-type semiconductors.

  • PDF

Properties of Working Electrodes with Diamond Blends in Dye Sensitized Solar Cells

  • Choi, Minkyoung;Noh, Yunyoung;Song, Ohsung
    • 한국세라믹학회지
    • /
    • 제52권5호
    • /
    • pp.384-388
    • /
    • 2015
  • We prepared blocking layers by adding 0.0 ~ 0.6 wt% nano diamond blends (DBs) to $TiO_2$ blocking layers to improve the energy conversion efficiencies (ECEs) of dye sensitized solar cells (DSSCs). TEM and micro-Raman spectroscopy were used to characterize the microstructure and phases of DBs, respectively. Optical microscopy and FE-SEM were used to analyze the microstructure of the $TiO_2$ blocking layer with DBs. UV-VIS-NIR spectroscopy was used to determine the absorbance of the working electrodes. A solar simulator and a potentiostat were used to determine the photovoltaic properties and the impedance of the DSSCs with DBs. From the results of the DBs analysis, we determined a 6.97 nm combination of nano diamonds and graphite. We confirmed that ECE increased from 5.64 to 6.48 % when the added DBs increased from 0.0 to 0.2 wt%. This indicates that the effective surface area and electron mobility increased when DBs were added to the $TiO_2$ blocking layer. Our results indicate that the ECE of DSSCs can be enhanced by adding an appropriate amount of DBs to the $TiO_2$ blocking layers.

Evaluation of antibacterial activity and cytotoxic effects of green AgNPs against Breast Cancer Cells (MCF 7)

  • Vizhi, Dhandapani Kayal;Supraja, Nookala;Devipriya, Anbumani;Tollamadugu, Naga Venkata Krishna Vara Prasad;Babujanarthanam, Ranganathan
    • Advances in nano research
    • /
    • 제4권2호
    • /
    • pp.129-143
    • /
    • 2016
  • The present work reports a facile, rapid and an eco-friendly method for the synthesis of silver nanoparticles using Luffa acutangula (L. acutangula) leaves extract and their antibacterial and cytotoxic effects. The synthesized silver nanoparticles (AgNPs) were characterized by UV-Visible spectroscopy (UV-Vis), Fourier transform infrared spectroscopy (FT-IR) and X-ray diffraction analysis (XRD). Additionally the topography, morphology and the elemental composition of the particles were determined by Scanning Electron Microscopy (SEM) and Energy dispersive spectrophotometric (EDS) technique and the measured particle sizes from SEM micrographs are in the range of 12.5 to 24.5nm. The in-vitro antimicrobial activity of the synthesized nanoparticles was high against gram positive Staphylococcus aureus and moderate against gram negative Escherichia coli and Pseudomonas aeruginosa strains. Further, the cytotoxic effects of synthesized AgNPs were evaluated against Human Breast Cancer (MCF 7) cell line.

Green Synthesis of Nanoparticles Using Extract of Ecklonia Cava and Catalytic Activity for Synthetic Dyes

  • Kim, Beomjin;Song, Woo Chang;Park, Sun Young;Park, Geuntae
    • 한국환경과학회지
    • /
    • 제29권12호
    • /
    • pp.1171-1184
    • /
    • 2020
  • The green synthesis of inorganic nanoparticles (NPs) using biomaterials has garnered considerable attention in recent years because of its eco-friendly, non-toxic, simple, and low-cost nature. In this study, we synthesized NPs of noble metals, such as Ag and Au using an aqueous extract of a marine seaweed, Ecklonia cava. The formation of AgNPs and AuNPs was confirmed by the presence of surface plasmon resonance peaks in UV-Vis absorption spectra at approximately 430 and 530 nm, respectively. Various properties of the NPs were evaluated using characterization techniques, such as dynamic light scattering, transmission electron microscopy, energy-dispersive X-ray spectroscopy, Fourier transform infrared spectroscopy, and X-ray diffraction analysis. Phytochemicals in the seaweed extract, such as phlorotannins, acted as both reducing and stabilizing agents for the growth of the NPs. The green-synthesized AgNPs and AuNPs were found to exhibit high catalytic activity for the decomposition of organic dyes, including azo dyes, methylene blue, rhodamine B, and methyl orange.

방사분석과 분광학을 이용한 Am(III) 가수분해와 옥살레이트 착물 화학종 연구 (Radioanalytical and Spectroscopic Characterizations of Hydroxo- and Oxalato-Am(III) Complexes)

  • 김희경;조혜륜;정의창;차완식
    • 방사성폐기물학회지
    • /
    • 제16권4호
    • /
    • pp.397-410
    • /
    • 2018
  • 아메리슘(Am)은 사용후핵연료의 장기 방사성 독성에 크게 영향을 주기 때문에 고준위 방사성 폐기물 처분의 장기 안전성 평가에 필수적으로 고려되어야 할 원소이다. 분광학적 방법을 이용한 일부 악티나이드 원소의 화학반응 연구가 활발히 진행되고 있는 반면, 아메리슘에 대한 연구는 아직까지 미비한 상황이다. 이 연구에서는 고순도의 시료를 필요로 하는 화학반응 연구를 위하여 $^{241}Am$ 시료를 정제한 후, 액체섬광계수기와 감마선 및 알파선 스펙트럼을 이용하여 정량과 정성분석을 하였다. 액체 광도파 모세관 셀을 이용한 고감도의 UV-Vis 흡수 분광학과 시간분해 레이저 형광 분광학을 이용하여 Am(III) 가수분해물과 옥살레이트(oxalate, Ox) 착물반응을 조사하였다. 산성조건에서 $Am^{3+}$은 503 nm에서 최대 흡수봉우리를 보이며, 몰흡광계수는 $424{\pm}8cm^{-1}{\cdot}M^{-1}$임을 확인하였다. 중성 이상의 pH 조건에서 형성되는 $Am(OH)_3(s)$ 콜로이드 입자에서는 506-507 nm 파장에서 최대 흡수봉우리가 관측되었다. ${Am(Ox)_3}^{3-}$ 착물은 $Am^{3+}$에 비교하여 흡수 및 발광스펙트럼이 각각 4와 5 nm정도 장파장으로 이동하였고 몰흡광계수와 발광세기도 크게 증가하였다. ${Am(Ox)_3}^{3-}$의 발광수명은 23에서 56ns으로 증가하였고 이는 Am(III)의 내부권에 결합하고 있던 약 여섯 개의 물분자가 옥살레이트의 카르복실기로 치환되었음을 의미한다. 이 결과로부터 ${Am(Ox)_3}^{3-}$은 각 옥살레이트 리간드가 두 자리 결합(bidentate)을 하고 있다는 것을 제안하였다.