DOI QR코드

DOI QR Code

Radioanalytical and Spectroscopic Characterizations of Hydroxo- and Oxalato-Am(III) Complexes

방사분석과 분광학을 이용한 Am(III) 가수분해와 옥살레이트 착물 화학종 연구

  • Received : 2018.07.10
  • Accepted : 2018.08.02
  • Published : 2018.12.31

Abstract

When considering the long-term safety assessment of spent-nuclear fuel management, americium is one of the most radio-toxic actinides. Although spectroscopic methods are widely used for the study of actinide chemistry, application of those methods to americium chemistry has been limited. Herein, we purified $^{241}Am$ to obtain a highly pure stock solution required for spectroscopic studies. Quantitative and qualitative analyses of purified $^{241}Am$ were carried out using liquid scintillation counting, and gamma and alpha radiation spectrometry. Highly sensitive absorption spectrometry coupled with a liquid waveguide capillary cell and time-resolved laser fluorescence spectroscopy were employed for the study of Am(III) hydrolysis and oxalate (Ox) complexation. $Am^{3+}$ ions under acidic conditions exhibit maximum absorbance at 503 nm, with a molar absorption coefficient of $424{\pm}8cm^{-1}{\cdot}M^{-1}$. $Am(OH)_3(s)$ colloidal particles formed under near neutral pH conditions were identified by monitoring the absorbance at around 506-507 nm. The formation of ${Am(Ox)_3}^{3-}$ was detected by red-shifts of the absorption and luminescence spectra of 4 and 5 nm, respectively. In addition, considerable enhancements of the luminescence intensities were observed. The luminescence lifetime of ${Am(Ox)_3}^{3-}$ increased from 23 to 56 ns, which indicates that approximately six water molecules are replaced by carboxylate ligands in the inner-sphere of the Am(III). These results suggest that ${Am(Ox)_3}^{3-}$ is formed through the bidentate coordination of the oxalate ligands.

아메리슘(Am)은 사용후핵연료의 장기 방사성 독성에 크게 영향을 주기 때문에 고준위 방사성 폐기물 처분의 장기 안전성 평가에 필수적으로 고려되어야 할 원소이다. 분광학적 방법을 이용한 일부 악티나이드 원소의 화학반응 연구가 활발히 진행되고 있는 반면, 아메리슘에 대한 연구는 아직까지 미비한 상황이다. 이 연구에서는 고순도의 시료를 필요로 하는 화학반응 연구를 위하여 $^{241}Am$ 시료를 정제한 후, 액체섬광계수기와 감마선 및 알파선 스펙트럼을 이용하여 정량과 정성분석을 하였다. 액체 광도파 모세관 셀을 이용한 고감도의 UV-Vis 흡수 분광학과 시간분해 레이저 형광 분광학을 이용하여 Am(III) 가수분해물과 옥살레이트(oxalate, Ox) 착물반응을 조사하였다. 산성조건에서 $Am^{3+}$은 503 nm에서 최대 흡수봉우리를 보이며, 몰흡광계수는 $424{\pm}8cm^{-1}{\cdot}M^{-1}$임을 확인하였다. 중성 이상의 pH 조건에서 형성되는 $Am(OH)_3(s)$ 콜로이드 입자에서는 506-507 nm 파장에서 최대 흡수봉우리가 관측되었다. ${Am(Ox)_3}^{3-}$ 착물은 $Am^{3+}$에 비교하여 흡수 및 발광스펙트럼이 각각 4와 5 nm정도 장파장으로 이동하였고 몰흡광계수와 발광세기도 크게 증가하였다. ${Am(Ox)_3}^{3-}$의 발광수명은 23에서 56ns으로 증가하였고 이는 Am(III)의 내부권에 결합하고 있던 약 여섯 개의 물분자가 옥살레이트의 카르복실기로 치환되었음을 의미한다. 이 결과로부터 ${Am(Ox)_3}^{3-}$은 각 옥살레이트 리간드가 두 자리 결합(bidentate)을 하고 있다는 것을 제안하였다.

Keywords

References

  1. J.J. Katz, G.T. Seaborg, and L.R. Morss, The chemistry of the actinide elements, 2nd ed., Chapman and Hall Ltd, New York (1986).
  2. W. Runde, Americium and Curium: Radionuclides, John Wiley & Sons, Ltd. (2006).
  3. B. Miller, Safety case for the disposal of spent nuclear fuel at Olkiluoto-features, events and processes 2012, Posiva Oy, POSIVA 2012-07 (2012).
  4. Programme for research, development and demonstration of methods for the management and disposal of nuclear waste, Swedish Nuclear Fuel and Waste Management Co., SKB Technical Report TR-16-15 (2016).
  5. M. Altmaier, X. Gaona, and T. Fanghanel, "Recent Advances in Aqueous Actinide Chemistry and Thermodynamics", Chem. Rev., 113(2), 901-943 (2013). https://doi.org/10.1021/cr300379w
  6. X. Tan, M. Fang, and X. Wang, "Sorption Speciation of Lanthanides/Actinides on Minerals by TRLFS, EXAFS and DFT Studies: A Review", Molecules, 15(11), 8431- 8468 (2010). https://doi.org/10.3390/molecules15118431
  7. G. Geipel, "Some aspects of actinide speciation by laser- induced spectroscopy", Coord. Chem. Rev., 250(7- 8), 844-854 (2006). https://doi.org/10.1016/j.ccr.2005.11.007
  8. E.C. Jung, H.R. Cho, M.H. Baik, H. Kim, and W. Cha, "Time-resolved laser fluorescence spectroscopy of $UO_2(CO_3)_3^{4-}$", Dalton Trans., 44, 18831-18838 (2015). https://doi.org/10.1039/C5DT02873F
  9. G. Buckau, J.I. Kim, R. Klenze, D.S. Rhee, and H. Wimmer, "A Comparative Spectroscopic Study of the Fulvate Complexation of Trivalent Transuranium Ions", Radiochim. Acta, 57(2-3), 105-111 (1992).
  10. T. Fanghanel, J.I. Kim, P. Paviet, R. Klenze, and W. Hauser, "Thermodynamics of Radioactive Trace Elements in Concentrated Electrolyte Solutions: Hydrolysis of $Cm^{3+}$ in NaCl-Solutions", Radiochim. Acta, 66-67(s1), 81-87 (1994).
  11. T. Fanghanel, Τ. Weger Η, T. Konnecke, V. Neck, P. Paviet-Hartmann, E. Steinle, and J.I. Kim, "Thermodynamics of Cm(III) in concentrated electrolyte solutions. Carbonate complexation at constant ionic strength (1 M NaCl)", Radiochim. Acta, 82(s1), 47-53 (1998).
  12. R. Guillaumont, T. Fanghanel, V. Neck, J. Fuger, D. Palmer, I. Grenthe, and M. H. Rand, Chemical Thermodynamics Vol. 5: Update on the Chemical Thermodynamics of Uranium, Neptunium, Plutonium, Americium, and Technetium, Elsevier, Amsterdam, The Netherlands (2003).
  13. H. Geckeis, J. Lutzenkirchen, R. Polly, T. Rabung, and M. Schmidt, "Mineral-Water Interface Reactions of Actinides", Chem. Rev., 113(2), 1016-1062 (2013). https://doi.org/10.1021/cr300370h
  14. X. Tan, X. Ren, C. Chen, and X. Wang, "Analytical approaches to the speciation of lanthanides at solid-water interfaces", Trends Anal. Chem., 61, 107-132 (2014). https://doi.org/10.1016/j.trac.2014.06.010
  15. P. Thouvenot, S. Hubert, C. Moulin, P. Decambox, and P. Mauchien, "Americium Trace Determination in Aqueous and Solid Matrices by Time-Resolved Laser-Induced Fluorescence", Radiochim. Acta, 61(1), 15-21 (1993).
  16. W.T. Carnall, "A systematic analysis of the spectra of trivalent actinide chlorides in $D_{3h}$ site symmetry", J. Chem. Phys., 96(12), 8713-8726 (1992). https://doi.org/10.1063/1.462278
  17. J.V. Beitz, "f-State luminescence of trivalent lanthanide and actinide ions in solution", J. Alloy. Comp., 207-208, 41-50 (1994). https://doi.org/10.1016/0925-8388(94)90173-2
  18. A. Barkleit, G. Geipel, M. Acker, S. Taut, and G. Bernhard, "First fluorescence spectroscopic investigation of Am(III) complexation with an organic carboxylic ligand, pyromellitic acid", Spectrochim. Acta Part A: Mol. Biomol. Spec., 78(1), 549-552 (2011). https://doi.org/10.1016/j.saa.2010.09.003
  19. B. Raditzky, S. Sachs, K. Schmeide, A. Barkleit, G. Geipel, and G. Bernhard, "Spectroscopic study of americium(III) complexes with nitrogen containing organic model ligands", Polyhedron, 65, 244-251 (2013). https://doi.org/10.1016/j.poly.2013.08.047
  20. A. Barkleit, J. Kretzschmar, S. Tsushima, and M. Acker, "Americium(III) and europium(III) complex formation with lactate at elevated temperatures studied by spectroscopy and quantum chemical calculations", Dalton Trans., 43, 11221-11232 (2014). https://doi.org/10.1039/C4DT00440J
  21. R. Klenze, J.I. Kim, and H. Wimmer, "Speciation of aquatic actinide ions by pulsed laser spectroscopy", Radiochim. Acta, 52-53(1), 97-103 (1991).
  22. G. Tian and D.K. Shuh, "A spectrophotometric study of Am(III) complexation with nitrate in aqueous solution at elevated temperatures", Dalton Trans., 43, 14565-14569 (2014). https://doi.org/10.1039/C4DT01183J
  23. T.K. Keenan, "Americium and Curium", J. Chem. Edu., 36(1), 27-31 (1959). https://doi.org/10.1021/ed036p27
  24. S. Stadler and J. I. Kim, "Hydrolysis Reactions of Am (III) and Am(V)", Radiochim. Acta, 44-45(1), 39-44 (1988).
  25. J.I. Kim, D.S. Rhee, and G. Buckau, "Complexation of Am(III) with Humic Acids of Different Origin", Radiochim. Acta, 52-53(1), 49-56 (1991).
  26. J.I. Kim, D.S. Rhee, H. Wimmer, G. Buckau, and R. Klenze, "Complexation of Trivalent Actinide Ions ($Am^{3+}$, $Cm^{3+}$) with Humic Acid: A Comparison of Different Experimental Methods", Radiochim. Acta, 62(1-2), 35-44 (1993).
  27. J.I. Kim, D.S. Rhee, G. Buckau, and A. Morgenstern, "Americium(III)-Humate Interaction in Natural Groundwater: Influence of Purification on Complexation Properties", Radiochim. Acta, 79(3), 173-182 (1997).
  28. M. Morgenstern, R. Klenze, and J.I. Kim, "The formation of mixed-hydroxo complexes of Cm(III) and Am(III) with humic acid in the neutral pH range", Radiochim. Acta, 88(1), 7-17 (2000). https://doi.org/10.1524/ract.2000.88.1.007
  29. M. Muller, M. Acker, S. Taut, and G. Bernhard, "Complex formation of trivalent americium with salicylic acid at very low concentrations", J. Radioanal. Nucl. Chem., 286(1), 175-180 (2010). https://doi.org/10.1007/s10967-010-0639-9
  30. M.A. Brown, A.J. Kropf, A. Paulenova, and A.V. Gelis, "Aqueous complexation of citrate with neodymium(III) and americium(III): a study by potentiometry, absorption spectrophotometry, microcalorimetry, and XAFS", Dalton Trans., 43, 6446-6454 (2014). https://doi.org/10.1039/c4dt00343h
  31. G. Meinrath and J.I. Kim, "The Carbonate Complexation of the Am(III) Ion", Radiochim. Acta, 52-53(1), 29-34 (1991).
  32. H.-R. Cho, E.C. Jung, K.K. Park, K. Song, and J.-I. Yun, "Effect of reduction on the stability of Pu(VI) hydrolysis species", Radiochim. Acta, 98(9-11), 555-561 (2010). https://doi.org/10.1524/ract.2010.1753
  33. H.-R. Cho, E.C. Jung, W. Cha, K. Song, and K.K. Park, Purification of Americium Reagent, Korea Atomic Energy Research Institute, KAERI/TR-4800/2012 (2012).
  34. T.-H. Park, E.-H. Jeon, Y.S. Choi, J.-H. Park, H.J. Ahn, and Y.J. Park, "Rapid quantification of alpha emitters in low- and intermediate-level dry radioactive waste", J. Radioanal. Nucl. Chem., 307(1), 645-651 (2016). https://doi.org/10.1007/s10967-015-4177-3
  35. H.-R. Cho, K.K. Park, E.C. Jung, K. Song, "A Sensitive Detection of Actinides Species in Solutions using a Capillary Cell", J. Nucl. Fuel Cycle Waste Technol., 7(2), 109-114 (2009).
  36. E.C. Jung, M.H. Baik, H.-R. Cho, H.-K. Kim, and W. Cha, "Study on the Interaction of U(VI) Species with Natural Organic Matters in KURT Groundwater", J. Nucl. Fuel Cycle Waste Technol., 15(2), 101-116 (2017). https://doi.org/10.7733/jnfcwt.2017.15.2.101
  37. S.E. Stephanou, J.P. Nigon, and R.A. Penneman, "The solution absorption spectra of americium(III), (V), and (VI)", J. Chem. Phys., 21, 42-45 (1953). https://doi.org/10.1063/1.1698619
  38. W.D. Horrocks and D.R. Sudnick, "Lanthanide ion probes of structure in biology. Laser-induced luminescence decay constants provide a direct measure of the number of metal-coordinated water molecules", J. Am. Chem. Soc., 101, 334-340 (1979). https://doi.org/10.1021/ja00496a010
  39. T. Kimura and G.R. Choppin, "Luminescence study on determination of the hydration number of Cm(III)", J. Alloy. Comp., 213-214, 313-317 (1994). https://doi.org/10.1016/0925-8388(94)90921-0
  40. T. Kimura and Y. Kato, "Luminescence study on determination of the inner-sphere hydration number of Am(III) and Nd(III)", J. Alloy. Comp., 271-273, 867-871 (1998). https://doi.org/10.1016/S0925-8388(98)00236-9
  41. W. Hummel, G. Anderegg, L. Rao, I. Puigdomenech, and O. Tochiyama, Chemical thermodynamics Vol. 9: Chemical thermodynamics of compounds and complexes of U, Np, Pu, Am, Tc, Se, Ni and Zr with selected organic ligands, Elsevier Amsterdam, The Netherlands (2005).
  42. I. Grenthe, G. Gardhammar, and E. Rundcrantz, "Thermodynamic properties of rare earth complexes", Acta Chemica Scandinavica, 23, 93-108 (1969). https://doi.org/10.3891/acta.chem.scand.23-0093