• 제목/요약/키워드: VERTICAL GROUND REACTION FORCE

검색결과 163건 처리시간 0.029초

남녀 주행 시 수직 지면반력 및 착지 각도에 미치는 신발 중저 경도의 영향 (Influence of Midsole Hardness on Vertical Ground Reaction force and Heel Strike Angle during Men's and Women's Running)

  • 이용구;김윤혁
    • 한국운동역학회지
    • /
    • 제19권2호
    • /
    • pp.379-386
    • /
    • 2009
  • 주행 중 인체는 발과 지면 사이의 반복적인 충격력을 경험한다. 충격력은 하지의 부간 편안함 그리고 주행 능력과 높은 연관성이 있다. 이에 신발 메이커들은 하지의 부상을 줄이고 편안함을 향상시키며 주행 능력을 개선하기 위하여 다양한 특성의 중저를 가진 신발을 개발하여 왔다. 본 연구의 목적은 남녀 주행 시 수직 지면반력 및 착지각도에 미치는 신발 중저 경도의 영향을 조사하는 것이다. 이를 위하여 전문 주자 남녀 각각 다섯 명이 본 실험에 참여하여 연질 중질, 경질의 운동화를 순차적으로 신고 동일한속도로 주행하도록 하였다. 결론적으로 성별과는 무관하게 최대 수직 지면반력, 충격력 정점, 디딤 시간은 신발 중저의 경도의 영향을 주지 못하였다. 하지만 중저가 경질이 될수록 부하 시간은 감소하고 부하율은 증가하였다. 이때 남성 참여자가 중저의 변화에 대하여 큰 차이를 보이지 않은 반면 여성 참여자는 상대적으로 더 민감한 반응을 보였다. 저자들은 본 연구의 결과가 향후 성별에 특화된 신발의 적절한 중저 경도를 결정하기 위한 가이드라인을 제공하는데 적용되기를 기대하는 바이다.

The Effects of the Foot Types and Structures of the Inner Arch Support Bands on Ground Reaction Force Variables and Sensations during 2nd Vertical Ballet Jump

  • Kim, Juhyun;Yi, Kyungock
    • 한국운동역학회지
    • /
    • 제27권1호
    • /
    • pp.25-33
    • /
    • 2017
  • Objective: The purpose of this research was to establish the differences of ground reaction force variables and sensations according to the foot types and the structures of the inner arch support band during $2^{nd}$ vertical ballet jump. Method: 12 Female ballet majors in their twenties who have danced for more than 10 years and had no injuries were selected for this research. Independent variables consist of the foot type (pes rectus, pes planus) and the structure of the inner arch support band (no band, x-shaped, linear shaped). Dependent variables consist of ground reaction force variables and relative wearing sensation. Results: The impact decreased the most when x-shaped bands were used on pes rectus and rigid pes planus. When linear-shaped bands were used on flexible pes planus, the impact decreased. Conclusion: The bands also helped reduce the impact on pes rectus. Furthermore, it is clear that according to the foot type, the impact reducing band structures perform differently. The inner arch support bands were necessary for jump training for any foot type.

Coupled foot-shoe-ground interaction model to assess landing impact transfer characteristics to ground condition

  • Kim, S.H.;Cho, J.R.;Choi, J.H.;Ryu, S.H.;Jeong, W.B.
    • Interaction and multiscale mechanics
    • /
    • 제5권1호
    • /
    • pp.75-90
    • /
    • 2012
  • This paper investigates the effects of sports ground materials on the transfer characteristics of the landing impact force using a coupled foot-shoe-ground interaction model. The impact force resulting from the collision between the sports shoe and the ground is partially dissipated, but the remaining portion transfers to the human body via the lower extremity. However, since the landing impact force is strongly influenced by the sports ground material we consider four different sports grounds, asphalt, urethane, clay and wood. We use a fully coupled 3-D foot-shoe-ground interaction model and we construct the multi-layered composite ground models. Through the numerical simulation, the landing impact characteristics such as the ground reaction force (GRF), the acceleration transfer and the frequency response characteristics are investigated for four different sports grounds. It was found that the risk of injury, associated with the landing impact, was reduced as the ground material changes from asphalt to wood, from the fact that both the peak vertical acceleration and the central frequency monotonically decrease from asphalt to wood. As well, it was found that most of the impact acceleration and frequency was dissipated at the heel, then not much changed from the ankle to the knee.

테니스 포핸드 스트로크 스탠스 유형의 지면반력 분석 (Analysis of Ground Reaction Force by Stance Type during Tennis Forehand Stroke)

  • 강영택;서국은
    • 한국운동역학회지
    • /
    • 제19권3호
    • /
    • pp.449-455
    • /
    • 2009
  • 이 연구는 경력 7년 이상 6개월 동안 부상이 없는 오른손잡이 세미웨스턴 그립을 사용하는 남자 고등학교 테니스 선수 8명을 대상으로 수평 수직스윙 유형과 스퀘어 세미오픈 오픈 스탠스 유형에 따른 테니스 포핸드 스트로크의 하지에 대한 분석방법으로 포워드 스윙에서 임팩트까지 하지의 지면반력 양상을 밝히고자 지면반력 데이터와 운동학적 데이터를 이용한 역동역학적 프로그램을 이용한 분석 결과 다음과 같은 결론을 얻었다. 전후 지면반력은 스퀘어 세미오픈 스탠스에서 스윙유형에 관계없이 임팩트로 갈수록 왼다리에서 감소되었으며, 오픈 스탠스는 체중이 발끝으로 이동하여 지면반력이 증가한 것으로 나타났으며, 수직지면반력은 스퀘어 세미오픈 스탠스에서 스윙유형에 관계없이 임팩트로 갈수록 왼다리에서 증가되었으며, 오픈 스탠스는 체중이 수직 이동되어 지면반력이 감소되는 것으로 나타났다.

런닝화의 일반인솔과 기능성인솔의 운동역학적 비교 분석 (Biomechanical Comparison Analysis of Popular Insole and Functional Insole of Running Shoes)

  • 신성훈;진영완
    • 한국운동역학회지
    • /
    • 제16권3호
    • /
    • pp.9-18
    • /
    • 2006
  • These studies show that I applied to functional insole (a specific S company) for minimizing shocks and sprain people's ankle arising from running. How to an effect on human body which studied a kinematics and kinetics from 10 college students during experiments. This study imposes several conditions by barefoot, normal running shoes and put functional insole shoes ran under average $2.0{\pm}0.24$ meter per second by motion analysis, ground reaction force and electromyography that used to specific A company. First of all, Motion analysis was caused by Achilles tendon angle, Angle of the lower leg, Angle of the knee, Initial sole angle and Barefoot angle. Second, Contact time, Vertical impact force peak timing, Vertical active force and Active force timing, and Maximum loading rate under impulse of first 20 percent and Value of total impulse caused Ground reaction force. Third. The tendon fo Quadriceps femoris, Biceps femoris, Tibialis anterior and gastronemius medials caused. electromyography. 1. Ground reaction force also showed that statically approximates other results from impact peak timing (p.001), Maximum loading rate(p<.001), Maximum loading rate timing (p<.001) and impulse of first 20 percent (p<.001). 2 Electromyography showed that averagely was distinguished from other factors, and did not show about that. Above experiment values known that there was statically difference between Motion analysis and Ground reaction force under absorbing of the functional insole shoes which was not have an effect on our body for kinetics and kinematics.

Comparison of difference in muscle activity ratio, ground reaction force and knee valgus angle during single leg squat and landing according to dynamic taping

  • Ha, Tae-Won;Park, Sam-Ho;Lee, Myung-Mo
    • Physical Therapy Rehabilitation Science
    • /
    • 제9권4호
    • /
    • pp.281-286
    • /
    • 2020
  • Objective: This study examined the effects of dynamic tape applied to the patellofemoral joint on the knee valgus angle, muscle activity, and ground reaction force during a single leg squat (SLS) and single leg landing (SLL). Design: Cross-sectional study. Methods: Twenty-four subjects (11 male, 13 female) who met the inclusion criteria were screened by the knee palpation and patella compression tests. First, the knee valgus angle and muscle activity during SLS were measured. Second, the knee valgus angle and ground reaction force during SLL were measured. For the intervention, a patella joint loop using dynamic tape was used. The knee valgus angle, muscle activities in SLS and SLL after the intervention, and the ground reaction force were measured in the same way. A paired t-test was used to examine the difference between before and after the intervention. Results: The knee valgus angle showed a statistically significant improvement after dynamic taping application in SLS and SLL (p<0.05). The differences in muscle activity of the VL/VMO and ground reaction forces were not statistically significant after dynamic taping application in SLS and SLL. Conclusions: This study showed that dynamic taping applied around the patellofemoral joint was effective in improving the knee valgus angle in SLS and SLL and had a reduced risk of secondary injury during sports activity.

클럽의 길이 변화에 따른 골프 스윙의 지면반력 변화 (Changes of Ground Reaction Forces by the Change of Club Length in Golf Swing)

  • 성낙준
    • 한국운동역학회지
    • /
    • 제17권2호
    • /
    • pp.31-40
    • /
    • 2007
  • Proper weight shifting is essential for a successful shot in golf swing and this could be described by means of the ground forces between the feet and ground. It is assumed that the ground forces would different according to the club used because the length and swing weight of each club is different. But, in present, it is not clear what changes are made by the change of clubs and this affect the swing motion. Therefore this study focused on the investigation of the changes of the ground forces and ground reaction forces (GRF) by the change of club length. The subjects were three professional male golfers. Four swings (driver, iron 3, iron 5, and iron 7) for each subject were taken by two high speed video cameras and two AMTI force platforms were used to measure the GRF simultaneously. Kwon GRF 2.0 and Mathcad 13 software were used to post processing the data. Changes of the three major component of GRF (Vertical, lateral, anterior-posterior force) at 10 predefined events were analyzed including the maximum. Major findings of this study were as follows. 1. Vertical forces; - There were no significant changes until the top of backswing. - Maximum was occurred at the club horizontal position in the downswing for both feet. The shorter club produced more maximum forces than longer ones in the left foot, but reverse were true for the right foot. - Maximum forces at impact shows the same patterns. 2. Lateral forces; Maximum was occurred at the club horizontal position for both feet, but there were no lateral forces because the direction of two forces was different. Maximum force pattern by different clubs was same as the vertical component. 3. Anterior-posterior forces; - This component made a counter-clock wise moment about a vertical axis located between two foot until the club vertical position was reached during the backswing, and reverse moment were produced when the club reached horizontal at the downswing. - Also this component made a forward moment about a horizontal axis located in the CG during the fore half of the downswing, and a reverse moment until the club reached vertical at the follow through phase. Maximum was occurred at the club vertical in the downswing for both feet. The longer club produced more maximum forces than shorter ones for both feet.

하체서포터 착용 이동 시의 운동역학적 분석 (Biomechanical Analysis on Locomotion with Lower Extremity Supporter)

  • 이경일;홍완기;이철갑
    • 한국운동역학회지
    • /
    • 제21권2호
    • /
    • pp.215-222
    • /
    • 2011
  • The purpose of this study was to analyze the effects of the use of the lower extremity supporter to ground reaction force(GRF) & EMG in women. Five women participated in the experiment conducted in the study(age: $46.7{\pm}3.5$ yrs, weight: $52.3{\pm}2.2$ kg, lower extremity height: $74.1{\pm}0.9$ cm, knee height: $40.7{\pm}1.4$ cm). The Ground reaction force was measured by AMTI ORG-6 and the Muscle activity of the lower extremity was measured by an 8-channel surface EMG system(Noraxon Myoresearch, USA, 1000Hz). We statistically compared muscle activity and ground reaction force with and without the lower-extremity supporter by one-way repeated ANOVA. The results were as follows. First, the use of the lower extremity supporter affects the ground reaction force along the anterior-posterior axis(Y). Second, the vertical(Z-axis) reaction force on the upper part of the lower extremity supporter increase because of the difference between the interval of vertical movement. Third, the muscle activity of the lateral gastrocnemius and rectus femoris was higher in the upper part of the lower extremity supporter. Further research for example, on a comparative analysis of joint moments, the effects of direct stressor on joints. and the relationship between muscle activity and joint movement, is necessary for a better understanding of the effects of the lower-extremity supporter.

항공기 지상운동 특성에 관한 연구 (A Study of Aircraft Ground Motion)

  • 송원종
    • 항공우주시스템공학회지
    • /
    • 제11권6호
    • /
    • pp.17-25
    • /
    • 2017
  • 항공기가 지상에서 주행할 때 지면과 타이어 사이에 걸리는 수직하중 정보는 마찰력, 횡력 계산 시 사용되는 등 항공기 거동에 있어서 주요한 변수이다. 그러나 실제 항공기 주행 시 실시간으로 수직하중 정보를 얻기 힘들고, 실제 시험에서 발생 가능한 비정상적 활주 상황을 방지하기 위하여 사전 해석을 통해 타이어 수직하중 및 항공기 지상 거동 특성을 예측해 볼 필요가 있다. 본 논문에서는 VI-Aircraft S/W를 이용하여 착륙장치 및 Full-Aircraft 모델을 구성하였고 조향 해석 및 활주시험 상황 모사 해석을 통하여 항공기 지상 거동 특성에 대하여 분석하였다.

지면반력분석기를 이용한 골프 스윙의 분석 평가 방법 (A Method for Analyzing and Evaluating the Golf Swing Using the Force Platform Data)

  • 성낙준
    • 한국운동역학회지
    • /
    • 제20권2호
    • /
    • pp.213-219
    • /
    • 2010
  • The purpose of this study is developing a method to analyze and evaluate a golf swing motion using the ground reaction force (GRF) data. Proper weight shifting is essential for a successful shot in golf swing and this could be evaluated by means of the forces between the feet and ground. GRF during the swing were measured from 15 low-handicapped male golfers including professionals. Four clubs(driver, iron 3, iron 5, and iron 7) were selected to analyze the differences due to different characteristics of club. Swings of each subject were taken using a high speed video camera and GRF data were taken simultaneously by two AMTI force platforms. To simplify the GRF data, forces of the three major component of GRF(vertical, lateral, anterior-posterior force) at 10 predefined temporal events for each trial were selected and the mean of each event were calculated and evaluated. Analyzed vertical GRF (VGRF) data could be divided into two different styles, one-legged and two legged. One-legged style shows good weight transfer to the target leg and most of the previous study shows this style as a typical pattern of good players. Therefore the data from the iron 5 swing obtained from 10 one-legged style golfers are provided as criteria for the evaluation of a swing.