• Title/Summary/Keyword: VERTICAL GROUND REACTION FORCE

Search Result 163, Processing Time 0.027 seconds

Biomechanics analysis by success and failure during golf putting swing (골프 퍼팅 스윙시 성공과 실패에 따른 운동역학적 분석)

  • Choi, Sung-Jin;Park, Jong-Jin
    • Korean Journal of Applied Biomechanics
    • /
    • v.12 no.2
    • /
    • pp.279-293
    • /
    • 2002
  • In the study the subjects who 10 university golfers act, and the kinetic factors were analyzed by the ground reaction system. the conclusion are as follows. 1) In the golf putting swing, the ground reaction factors of sagital plane in aspect are showen that the left and right foot sufficient difference, in the level of p <.05. 2) In the golf putting swing, the ground reaction factors of frontal plane in aspect is showen that the left foot has no significant difference in AD BS in the level of p < .05. In success, IP, FS. It can show significant difference. In addition, the right foot is shown the success, There is significant difference. 3) In the golf putting swing, the ground reaction factors of the vertical plane in aspect are shown that the left foot has no significant difference in BS, FS in the level p < .05. In success, AD, IP. It can show significant difference. In addition, the right foot is shown the success, There is significant difference. 4) In the golf putting swing, the ground reaction factors of torque in aspect are shown that the left foot had no significant difference in BS in the level p < .05. In success, AD, IP, FS. It can show significant difference. In addition, the right foot has no significant difference in IP in the level p < .05. AD, BS, FS. There is significant difference. The summarized conclusions are as follows. The first that the power of sagital plane needs the motion which can get the good power change in the stabilized pose. The second is that the small motion can make good putting in stabilized pose. The third is that the body weight move to the direction of the ball. The fourth is that the putting which looks perfect oscillation is good motion.

Lower Limbs Muscle Comparative Research for Verification Effect of Rehabilitation Training Program of Total Hip Arthroplasty (재활운동 프로그램에 참가한 엉덩인공관절 수술자의 하지근력 변화에 대한 비교연구)

  • Jin, Young-Wan
    • Journal of Life Science
    • /
    • v.20 no.4
    • /
    • pp.543-548
    • /
    • 2010
  • The purpose of this study was to examine the differences in kinetics between 6 months of rehabilitation training and 12 months of rehabilitation training after total hip arthroplasty. 10 unilateral THA participants performed kinetic tests. Three dimensional kinematics and hip flexors and abductors electromyography (EMG) were collected during each trial. T-test was used for statistical analysis (p<0.05). There was no significant difference in EMG data between the two groups, but the mean comparison EMG data was higher in the 12 months rehabilitation training group than the 6 months rehabilitation training group. The moment value was found with motion-dependent interaction analyzing method which was used by Feltner and Dapena. There was no significant difference between moment values of the two groups. There was no significant difference between ground reaction forces of the two groups; however, there were some differences shown in Fz (vertical reaction force) between the two groups ($892{\pm}104\;N$, $820{\pm}87\;N$). The first peak impact force was about 9% lower in the 12 months group compared to the 6 months group. The second peak active force was nearly equal between the two groups. More research is necessary to determine exactly what constitutes optimal rehabilitation training biomechanics for patients with total hip arthroplasty.

Differences in the Length Change Pattern of the Medial Gastrocnemius Muscle-Tendon Complex and Fascicle during Gait and One-legged and Two-legged Vertical Jumping (보행과 한발·두발 수직점프 수행 시 내측비복근 근-건 복합체와 근섬유다발의 길이 변화 패턴의 차이)

  • Lee, Hae-Dong;Han, Bo-Ram;Kim, Jin-Sun;Oh, Jeong-Hoon;Cho, Han-Yeop;Yoon, So-Ya
    • Korean Journal of Applied Biomechanics
    • /
    • v.25 no.2
    • /
    • pp.175-182
    • /
    • 2015
  • Objective : The purpose of this study was to investigate difference in fascicle behavior of the medial gastrocnemius during the locomotion with varying intensities, such as gait and one-legged and two-legged vertical jumping. Methods : Six subjects (3 males and 3 females; age: $27.2{\pm}1.6yrs.$, body mass: $62.8{\pm}9.8kg$, height: $169.6{\pm}8.5cm$) performed normal gait (G) at preferred speed and maximum vertical jumping with one (OJ) and two (TJ) legs. While subjects were performing the given tasks, the hip, knee and ankle joint motion and ground reaction force was monitored using a 8-infrared camera motion analysis system with two forceplates. Simultaneously, electromyography of the triceps surae muscles, and the fascicle length of the medial gastrocnemius were recorded using a real-time ultrasound imaging machine. Results : Comparing to gait, the kinematic and kinetic parameters of TJ and OJ were found to be significantly different. Along with those parameters, change in the medial gastrocnemius (MG) muscle-tendon complex (MTC) length ($50.57{\pm}6.20mm$ for TJ and $44.14{\pm}5.39mm$ for OJ) and changes in the fascicle length of the MG ($18.97{\pm}3.58mm$ for TJ and $20.31{\pm}4.59mm$ for OJ) were observed. Although the total excursion of the MTC and the MG fascicle length during the two types of jump were not significantly different, however the pattern of length changes were found to be different. For TJ, the fascicle length maintained isometric longer during the propulsive phase than OJ. Conclusion : One-legged and two-legged vertical jumping use different muscle-tendon interaction strategies.

Effects of Visual Information Blockage on Landing Strategy during Drop Landing (시각 정보의 차단이 드롭랜딩 시 착지 전략에 미치는 영향)

  • Koh, Young-Chul;Cho, Joon-Haeng;Moon, Gon-Sung;Lee, Hae-Dong;Lee, Sung-Cheol
    • Korean Journal of Applied Biomechanics
    • /
    • v.21 no.1
    • /
    • pp.31-38
    • /
    • 2011
  • This study aimed to determine the effects of the blockage of visual feedback on joint dynamics of the lower extremity. Fifteen healthy male subjects(age: $24.1{\pm}2.3\;yr$, height: $178.7{\pm}5.2\;cm$, weight: $73.6{\pm}6.6\;kg$) participated in this study. Each subject performed single-legged landing from a 45 cm-platform with the eyes open or closed. During the landing performance, three-dimensional kinematics of the lower extremity and ground reaction force(GRF) were recorded using a 8 infrared camera motion analysis system (Vicon MX-F20, Oxford Metric Ltd, Oxford, UK) with a force platform(ORG-6, AMTI, Watertown, MA). The results showed that at 50 ms prior to foot contact and at the time of foot contact, ankle plantar-flexion angle was smaller(p<.05) but the knee joint valgus and the hip flexion angles were greater with the eyes closed as compared to with the eyes open(p<.05). An increase in anterior GRF was observed during single-legged landing with the eyes closed as compared to with the eyes open(p<.05). Time to peak GRF in the medial, vertical and posterior directions occurred significantly earlier when the eyes were closed as compared to when the eyes were open(p<.05). Landing with the eyes closed resulted in a higher peak vertical loading rate(p<.05). In addition, the shock-absorbing power decreased at the ankle joint(p<.05) but increased at the hip joints when landing with the eyes closed(p<.05). When the eyes were closed, landing could be characterized by a less plantarflexed ankle joint and more flexed hip joint, with a faster time to peak GRF. These results imply that subjects are able to adapt the control of landing to different feedback conditions. Therefore, we suggest that training programs be introduced to reduce these injury risk factors.

A Comparative Study of Structural Analysis on DCM Improved by Pile and Block Type (말뚝식과 블록식이 혼합된 시멘트혼합처리공법(DCM)의 구조체 해석 비교 연구)

  • Shin, Hyun Young;Kim, Byung Il;Kim, Kyoung O;Han, Sang Jae
    • Journal of the Korean Geotechnical Society
    • /
    • v.30 no.4
    • /
    • pp.5-19
    • /
    • 2014
  • In this study, the structural analysis is performed on the method of shallow block and deep cement mixing pile, and then their characteristics and associated behaviors were analyzed. In the case of continuous beam analysis, the predicted settlement was very small, and shear force and bending stress are somewhat overestimated. The frame method is similar to numerical analysis in the internal force shallow block and long pile, but because the settlement of pile is underestimated, the additional calculation using the reaction of the long pile is necessary. For soil arching method and piled raft foundation method, the excessive axial force of long pile was predicted because the load sharing of pile is very large compared to the other methods. In the behavior of the shallow block and deep pile method, the settlement of shallow block and contact pressure are much in the center than the edge. In the estimating method considering the interaction between improved material and ground, the load sharing of the soil-cement pile ranges from 20% to 45%, and the stress ratio is 2.0~5.0 less than piled DCM. The maximum member forces at the boundary conditions of pile head are similar, but in fixed head the axial force and vertical displacement are different in accordance with pile arrangement.

The Effect of Elastic Therapeutic Taping on Lower Limb Kinematics during a Cross Cutting Movement from Landing in Subjects with Chronic Ankle Instability (탄력 테이핑이 만성 발목 불안정 환자의 착지 후 방향 전환 시 하지 관절 움직임에 미치는 영향)

  • Jo, Tae-Seong;Kim, Tack-Hoon;Choi, Houng-Sik;Roh, Jung-Suk
    • Journal of the Korean Society of Physical Medicine
    • /
    • v.12 no.4
    • /
    • pp.1-9
    • /
    • 2017
  • PURPOSE: This study investigated the effect that an elastic therapeutic taping treatment given to patients with chronic ankle instability had on the vertical ground reaction force, center of pressure, and range of motion in the ankle, knee and hip joints, during a Cross-cutting movement from landing. METHODS: This study analyzed 12 able-bodied adults and 12 patients with chronic ankle instability classified by using the Cumberland tool in the motion analysis laboratory, Hanseo University. The experiment was conducted under two conditions elastic taping and no treatment. In order to analyze the difference between the groups. An independent t-test was performed at p>.01. RESULTS: Plying an elastic therapeutic taping to the patients with chronic ankle instability significantly decreased the range of joint motion in the inversion of the ankle joint, the flexion of the knee joint, and the flexion and internal rotation of the hip joint during a cross-cutting movement from landing in comparison with the able-bodied adults p<.01. This restriction in the range of motion decreased the center-of-pressure trajectory length of patients with chronic ankle instability p>.01. CONCLUSION: An elastic therapeutic taping treatment given to patients with chronic ankle instability causes ankle stability to increase during a cross-cutting movement from landing.

Analysis of GRF & Plantar Foot Pressure of Stepping Foot on Skilled & Unskilled Player's in the Soccer Instep Shoot (축구 인스텝 슈팅시 숙련자와 미숙련자의 지지발 지면반력과 족저압력 분석)

  • Kim, Dong-Seop;Lee, Joong-Sook;Jang, Young-Min
    • Korean Journal of Applied Biomechanics
    • /
    • v.22 no.1
    • /
    • pp.17-24
    • /
    • 2012
  • This study is for providing fundamental data of sport biomechanics in GRF & plantar pressure of stepping foot of skilled & unskilled players' at the soccer instep shooting moments. Wearing Pedar-x of Novel, the study has drawn the following conclusion after measuring and analyzing the impact on the GRF and plantar pressure of stepping foot at the instep shooting moments. First, maximum vertical GRF showed higher in the skilled group than in the unskilled group. The results showed significantly different. This study reached the conclusion that the players in the skilled group performed faster and stronger stepping foot motions that the ones in the unskilled(p<.01). Second, since the plantar pressure of the skilled group appeared significantly higher than that of the unskilled, it has brought us to the conclusion that the skilled group performed faster and stronger stepping foot motions than the unskilled group (p<.05). Third, at the moment of instep kicking, the skilled group's average maximum plantar foot pressure of stepping foot was higher than the unskilled. Though the difference was not statistically significant, it can be concluded that the skilled group performed faster and stronger stepping foot motions than the unskilled group(p>.05). Fourth, for the COP moving route of stepping foot while instep kicking, the skilled people performed accurate and strong shooting motions directly toward the target direction with stable postures, no matter how it's left, right, front or back.

The Effects of Breathing Control on Kinetic Parameters of Lower Limbs during Walking Motion in Korean Dance (한국무용 걸음체 동작 시 호흡의 사용유무가 하지의 운동역학적 변인에 미치는 영향)

  • Park, Yang-Sun;Jang, Ji-Young
    • Korean Journal of Applied Biomechanics
    • /
    • v.19 no.4
    • /
    • pp.627-636
    • /
    • 2009
  • This study aims to provide a scientific basis for the abstract beauty of dance by analyzing the effects of controlling the breath during the walking motion of Korean dance. The objective of the study is to determine the significance of breathing during Korean dance, as it is externally expressed and technologically segmented, let alone the internal beauty of Korean dance. The results of this study show that the position of the body center and ASIS during the walking motion that uses breath was lower than that of the walking motion that does not use the breath. In addition, in each replacement of the knee joint and ankle joint, a narrow angle, in which bending is used a lot, appeared during the walking motion that uses the breath, but not during the walking gesture that does not use the breath. This occurred during the bending motion. In the first peak point, the vertical ground reaction force during the walking motion that uses the breath was higher than that during the walking motion that does not use the breath.

The Effect of Rehabilitation Training Programs on the Kinetic and Kinematic Parameters During Sit-To-Stand in Chronic Stroke Patients (만성편마비 환자의 재활 운동 유형이 일어서기 동작의 운동학 및 운동역학적 변인에 미치는 영향)

  • Yu, Yeon-Joo;Yoon, Te-Jin;Eun, Seon-Deok
    • Korean Journal of Applied Biomechanics
    • /
    • v.16 no.2
    • /
    • pp.121-134
    • /
    • 2006
  • The purpose of this study was to analyze the effect of different types of rehabilitation training program on the kinetic and kinematic parameters during sit-to-stand movement(STS) in chronic stroke patients. Two groups of hemiparetic patients, experimental and control, participated in the study. The experimental group participated in a 10-week training program (three sessions/wk, $1{\sim}1.5\;hr/session$) consisting of a warm-up, aerobic exercises, lower extremity strengthening. and a cool-down. The control group participated in an aerobic exercise. Three dimensional kinematic analysis and force platform; were used to analyze the duration of STS, lower extremity angle, and weight bearing ability. The experimental group which had more strength of lower extremity displayed decrease in duration of STS. However, the control group showed increases in duration during sit-to-stand movement. The control group flexed their trunk more than the group did Therefore, it took more time to extend their trunk during STS. The duration in sit-to-stand was affected by the strength of lower extremity and the angle of trunk movement. The angles of ankle and knee joint had an influenced on duration of STS. The post experimental group performed with their feet near the front leg of the chair during sit-to-stand, therefore the duration was decreased. The repetitive sit-to-stand movements as a resistance exercise was effective to hemiparetic patients in learning mechanism of sit-to-stand. The control group showed decreased differences in the vertical ground reaction forces between paretic and non-paretic limbs. Their training program included strengthening exercise that may help improving weight bearing ability. The control group showed increases in the center of pressure in the anteroposterior and mediolateral displacement. This means that the stability of movement was low in the control group. Their training program which combined aerobic and strengthening exercises that are more effective to improve the stability of movement.

Effect of Step Height and Visual Feedback on the Lower Limb Kinematics Before and After Landing

  • Jangwhon Yoon
    • Physical Therapy Korea
    • /
    • v.31 no.1
    • /
    • pp.29-39
    • /
    • 2024
  • Background: Landing from a step or stairs is a basic motor skill but high incidence of lateral ankle sprain has been reported during landing with inverted foot. Objects: This study aimed to investigate the effect of landing height and visual feedback on the kinematics of landing and supporting lower limbs before and after the touch down and the ground reaction force(GRF)s. Methods: Eighteen healthy females were voluntarily participated in landing from the lower (20 cm) and the higher (40 cm) steps with and without visual feedback. To minimize the time to plan the movement, the landing side was randomly announced as a starting signal. Effects of the step height, the visual feedback, or the interaction on the landing duration, the kinematic variables and the GRFs at each landing event point were analyzed. Results: With eyes blindfolded, the knee flexion and ankle dorsiflexion on landing side significantly decreased before and after the touch down. However, there was no significant effect of landing height on the anticipatory kinematics on the landing side. After the touch down, the landings from the higher step increased the knee flexion and ankle dorsiflexion on both landing and supporting sides. From the higher steps, the vertical GRF, anterior GRF, and lateral GRF increased. No interaction between step height and visual feedback was significant. Conclusion: Step height and visual feedback affected the landing limb kinematics independently. Visual feedback affected on the landing side while step height altered the supporting side prior to the touch down. After the touch down, the step height had greater influence on the lower limb kinematics and the GRFs than the visual feedback. Findings of this study can contribute to understanding of the injury mechanisms and preventing the lateral ankle sprain.