DOI QR코드

DOI QR Code

Effect of Step Height and Visual Feedback on the Lower Limb Kinematics Before and After Landing

  • Jangwhon Yoon (Laboratory of Biomechanics (LABIO), Department of Physical Therapy, Hoseo University)
  • Received : 2024.01.10
  • Accepted : 2024.02.17
  • Published : 2024.04.20

Abstract

Background: Landing from a step or stairs is a basic motor skill but high incidence of lateral ankle sprain has been reported during landing with inverted foot. Objects: This study aimed to investigate the effect of landing height and visual feedback on the kinematics of landing and supporting lower limbs before and after the touch down and the ground reaction force(GRF)s. Methods: Eighteen healthy females were voluntarily participated in landing from the lower (20 cm) and the higher (40 cm) steps with and without visual feedback. To minimize the time to plan the movement, the landing side was randomly announced as a starting signal. Effects of the step height, the visual feedback, or the interaction on the landing duration, the kinematic variables and the GRFs at each landing event point were analyzed. Results: With eyes blindfolded, the knee flexion and ankle dorsiflexion on landing side significantly decreased before and after the touch down. However, there was no significant effect of landing height on the anticipatory kinematics on the landing side. After the touch down, the landings from the higher step increased the knee flexion and ankle dorsiflexion on both landing and supporting sides. From the higher steps, the vertical GRF, anterior GRF, and lateral GRF increased. No interaction between step height and visual feedback was significant. Conclusion: Step height and visual feedback affected the landing limb kinematics independently. Visual feedback affected on the landing side while step height altered the supporting side prior to the touch down. After the touch down, the step height had greater influence on the lower limb kinematics and the GRFs than the visual feedback. Findings of this study can contribute to understanding of the injury mechanisms and preventing the lateral ankle sprain.

Keywords

Acknowledgement

Special thanks to Dami Yang, Jihae Yoo, Sohyun Chio, and Taehong Kim (R.I.P.) for their support in data collection and analysis.

References

  1. Shah S, Thomas AC, Noone JM, Blanchette CM, Wikstrom EA. Incidence and cost of ankle sprains in United States emergency departments. Sports Health 2016;8(6):547-52. https://doi.org/10.1177/1941738116659639
  2. Waterman BR, Owens BD, Davey S, Zacchilli MA, Belmont PJ Jr. The epidemiology of ankle sprains in the United States. J Bone Joint Surg Am 2010;92(13):2279-84. https://doi.org/10.2106/JBJS.I.01537
  3. Kramer LC, Denegar CR, Buckley WE, Hertel J. Factors associated with anterior cruciate ligament injury: history in female athletes. J Sports Med Phys Fitness 2007;47(4):446-54.
  4. Doherty C, Delahunt E, Caulfield B, Hertel J, Ryan J, Bleakley C. The incidence and prevalence of ankle sprain injury: a systematic review and meta-analysis of prospective epidemiological studies. Sports Med 2014;44(1):123-40. https://doi.org/10.1007/s40279-013-0102-5
  5. van Rijn RM, van Os AG, Bernsen RM, Luijsterburg PA, Koes BW, Bierma-Zeinstra SM. What is the clinical course of acute ankle sprains? A systematic literature review. Am J Med 2008;121(4):324-31.e6. https://doi.org/10.1016/j.amjmed.2007.11.018
  6. Kristianslund E, Bahr R, Krosshaug T. Kinematics and kinetics of an accidental lateral ankle sprain. J Biomech 2011;44(14):2576-8. https://doi.org/10.1016/j.jbiomech.2011.07.014
  7. Hsue BJ, Su FC. Effects of age and gender on dynamic stability during stair descent. Arch Phys Med Rehabil 2014;95(10):1860-9. https://doi.org/10.1016/j.apmr.2014.05.001
  8. Fong DT, Ha SC, Mok KM, Chan CW, Chan KM. Kinematics analysis of ankle inversion ligamentous sprain injuries in sports: five cases from televised tennis competitions. Am J Sports Med 2012;40(11):2627-32. https://doi.org/10.1177/0363546512458259
  9. Ko J, Rosen AB, Brown CN. Functional performance tests identify lateral ankle sprain risk: a prospective pilot study in adolescent soccer players. Scand J Med Sci Sports 2018;28(12):2611-6. https://doi.org/10.1111/sms.13279
  10. Simpson JD, Stewart EM, Rendos NK, Cosio-Lima L, Wilson SJ, Macias DM, et al. Anticipating ankle inversion perturbations during a single-leg drop landing alters ankle joint and impact kinetics. Hum Mov Sci 2019;66:22-30. https://doi.org/10.1016/j.humov.2019.03.015
  11. Payne VG, Isaacs LD. Human motor development: a lifespan approach. 9th ed. Routledge; 2017.
  12. Santello M. Review of motor control mechanisms underlying impact absorption from falls. Gait Posture 2005;21(1):85-94. https://doi.org/10.1016/j.gaitpost.2004.01.005
  13. Liebermann DG, Hoffman JR. Timing of preparatory landing responses as a function of availability of optic flow information. J Electromyogr Kinesiol 2005;15(1):120-30. https://doi.org/10.1016/j.jelekin.2004.07.005
  14. Teh J, Firth M, Sharma A, Wilson A, Reznek R, Chan O. Jumpers and fallers: a comparison of the distribution of skeletal injury. Clin Radiol 2003;58(6):482-6. https://doi.org/10.1016/S0009-9260(03)00064-3
  15. Commissaris DA, Toussaint HM. Anticipatory postural adjustments in a bimanual, whole body lifting task with an object of known weight. Hum Mov Sci 1997;16(4):407-31. https://doi.org/10.1016/S0167-9457(97)00007-9
  16. Fu W, Fang Y, Gu Y, Huang L, Li L, Liu Y. Shoe cushioning reduces impact and muscle activation during landings from unexpected, but not self-initiated, drops. J Sci Med Sport 2017;20(10):915-20. https://doi.org/10.1016/j.jsams.2017.03.009
  17. Christoforidou Α, Patikas DA, Bassa E, Paraschos I, Lazaridis S, Christoforidis C, et al. Landing from different heights: Biomechanical and neuromuscular strategies in trained gymnasts and untrained prepubescent girls. J Electromyogr Kinesiol 2017;32:1-8. https://doi.org/10.1016/j.jelekin.2016.11.003
  18. Santello M, McDonagh MJ, Challis JH. Visual and nonvisual control of landing movements in humans. J Physiol 2001;537(Pt 1):313-27. https://doi.org/10.1111/j.1469-7793.2001.0313k.x
  19. Mache MA, Hoffman MA, Hannigan K, Golden GM, Pavol MJ. Effects of decision making on landing mechanics as a function of task and sex. Clin Biomech (Bristol, Avon) 2013;28(1):104-9. https://doi.org/10.1016/j.clinbiomech.2012.10.001
  20. Helm M, Freyler K, Waldvogel J, Gollhofer A, Ritzmann R. The relationship between leg stiffness, forces and neural control of the leg musculature during the stretch-shortening cycle is dependent on the anticipation of drop height. Eur J Appl Physiol 2019;119(9):1981-99. https://doi.org/10.1007/s00421-019-04186-7
  21. Greenwood R, Hopkins A. Landing from an unexpected fall and a voluntary step. Brain 1976;99(2):375-86. https://doi.org/10.1093/brain/99.2.375
  22. Arampatzis A, Morey-Klapsing G, Bruggemann GP. The effect of falling height on muscle activity and foot motion during landings. J Electromyogr Kinesiol 2003;13(6):533-44. https://doi.org/10.1016/S1050-6411(03)00059-2
  23. Niu W, Wang Y, He Y, Fan Y, Zhao Q. Kinematics, kinetics, and electromyogram of ankle during drop landing: a comparison between dominant and non-dominant limb. Hum Mov Sci 2011;30(3):614-23. https://doi.org/10.1016/j.humov.2010.10.010
  24. Thompson HW, McKinley PA. Landing from a jump: the role of vision when landing from known and unknown heights. Neuroreport 1995;6(3):581-4. https://doi.org/10.1097/00001756-199502000-00043
  25. Dufek JS, Bates BT. The evaluation and prediction of impact forces during landings. Med Sci Sports Exerc 1990;22(3):370-7.
  26. Collings TJ, Gorman AD, Stuelcken MC, Mellifont DB, Sayers MGL. Exploring the justifications for selecting a drop landing task to assess injury biomechanics: a narrative review and analysis of landings performed by female netball players. Sports Med 2019;49(3):385-95. https://doi.org/10.1007/s40279-018-01045-x
  27. McKinley P, Pedotti A. Motor strategies in landing from a jump: the role of skill in task execution. Exp Brain Res 1992;90(2):427-40. https://doi.org/10.1007/BF00227257
  28. Carcia CR, Martin RL. The influence of gender on gluteus medius activity during a drop jump. Phys Ther Sport 2007;8(4):169-76. https://doi.org/10.1016/j.ptsp.2007.06.002
  29. Lephart SM, Ferris CM, Riemann BL, Myers JB, Fu FH. Gender differences in strength and lower extremity kinematics during landing. Clin Orthop Relat Res 2002;(401):162-9.
  30. Bussey MD, de Castro MP, Aldabe D, Shemmell J. Sex differences in anticipatory postural adjustments during rapid single leg lift. Hum Mov Sci 2018;57:417-25. https://doi.org/10.1016/j.humov.2017.10.003
  31. StairSupplies. How high should individual stairs be? StairSupplies [Internet]. 2016 Dec 14 [cited 2022 Nov 21]. Available from: https://www.stairsupplies.com/resources/stair-design/high-individual-stairs/
  32. Chavez-Sanchez I, Gonzalez-Torres P, Tejada-Gutierrez A, ReyGalindo J, Aceves-Gonzalez C. A step towards inclusive design: comfortable maximum height of a bus step for the elderly Mexican population. In: Bagnara S, Tartaglia R, Albolino S, Alexander T, Fujita Y editors. Proceedings of the 20th Congress of the International Ergonomics Association (IEA 2018). Advances in intelligent systems and computing. Vol. 824. Springer; 2019;1634-1641.
  33. Wu G, Siegler S, Allard P, Kirtley C, Leardini A, Rosenbaum D, et al.; Standardization and Terminology Committee of the International Society of Biomechanics. ISB recommendation on definitions of joint coordinate system of various joints for the reporting of human joint motion--part I: ankle, hip, and spine. International Society of Biomechanics. J Biomech 2002;35(4):543-8. https://doi.org/10.1016/S0021-9290(01)00222-6
  34. Jenkins WL, Williams DS 3rd, Williams K, Hefner J, Welch H. Sex differences in total frontal plane knee movement and velocity during a functional single-leg landing. Phys Ther Sport 2017;24:1-6. https://doi.org/10.1016/j.ptsp.2016.09.005
  35. Sousa ASP, Silva M, Gonzalez S, Santos R. Bilateral compensatory postural adjustments to a unilateral perturbation in subjects with chronic ankle instability. Clin Biomech (Bristol, Avon) 2018;57:99-106. https://doi.org/10.1016/j.clinbiomech.2018.06.015
  36. Medina JM, Valovich McLeod TC, Howell SK, Kingma JJ. Timing of neuromuscular activation of the quadriceps and hamstrings prior to landing in high school male athletes, female athletes, and female non-athletes. J Electromyogr Kinesiol 2008;18(4):591-7. https://doi.org/10.1016/j.jelekin.2006.11.009
  37. Norcross MF, Shultz SJ, Weinhold PS, Lewek MD, Padua DA, Blackburn JT. The influences of sex and posture on joint energetics during drop landings. Scand J Med Sci Sports 2015;25(2):e166-75. https://doi.org/10.1111/sms.12263
  38. Duncan A, McDonagh MJ. Stretch reflex distinguished from pre-programmed muscle activations following landing impacts in man. J Physiol 2000;526(Pt 2):457-68. https://doi.org/10.1111/j.1469-7793.2000.t01-1-00457.x
  39. McDonagh MJ, Duncan A. Interaction of pre-programmed control and natural stretch reflexes in human landing movements. J Physiol 2002;544(3):985-94. https://doi.org/10.1113/jphysiol.2002.024844
  40. Liebermann DG, Goodman D. Pre-landing muscle timing and post-landing effects of falling with continuous vision and in blindfold conditions. J Electromyogr Kinesiol 2007;17(2):212-27. https://doi.org/10.1016/j.jelekin.2006.01.011
  41. Devita P, Skelly WA. Effect of landing stiffness on joint kinetics and energetics in the lower extremity. Med Sci Sports Exerc 1992;24(1):108-15. https://doi.org/10.1249/00005768-199201000-00018
  42. Magalhaes FH, Goroso DG. Preparatory EMG activity reveals a rapid adaptation pattern in humans performing landing movements in blindfolded condition. Percept Mot Skills 2009;109(2):500-16. https://doi.org/10.2466/pms.109.2.500-516
  43. Hondzinski JM, Darling WG. Aerial somersault performance under three visual conditions. Motor Control 2001;5(3):281-300. https://doi.org/10.1123/mcj.5.3.281
  44. von Lassberg C, Beykirch KA, Mohler BJ, Bulthoff HH. Intersegmental eye-head-body interactions during complex whole body movements. PLoS One 2014;9(4):e95450. Erratum in: PLoS One 2014;9(10):e112206.
  45. Smith JA, Ignasiak NK, Jacobs JV. Task-invariance and reliability of anticipatory postural adjustments in healthy young adults. Gait Posture 2020;76:396-402. https://doi.org/10.1016/j.gaitpost.2020.01.003
  46. Lacquaniti F. Automatic control of limb movement and posture. Curr Opin Neurobiol 1992;2(6):807-14. https://doi.org/10.1016/0959-4388(92)90138-B
  47. Bianchi L, Angelini D, Orani GP, Lacquaniti F. Kinematic coordination in human gait: relation to mechanical energy cost. J Neurophysiol 1998;79(4):2155-70. https://doi.org/10.1152/jn.1998.79.4.2155
  48. Hertel J. Functional anatomy, pathomechanics, and pathophysiology of lateral ankle instability. J Athl Train 2002;37(4):364-75.
  49. Levin O, Vanwanseele B, Thijsen JR, Helsen WF, Staes FF, Duysens J. Proactive and reactive neuromuscular control in subjects with chronic ankle instability: evidence from a pilot study on landing. Gait Posture 2015;41(1):106-11. https://doi.org/10.1016/j.gaitpost.2014.09.005
  50. dos Santos MJ, Gorges AL, Rios JL. Individuals with chronic ankle instability exhibit decreased postural sway while kicking in a single-leg stance. Gait Posture 2014;40(1):231-6. https://doi.org/10.1016/j.gaitpost.2014.04.002