• Title/Summary/Keyword: VEGETATION PATTERN

Search Result 297, Processing Time 0.03 seconds

Method of Monitoring Forest Vegetation Change based on Change of MODIS NDVI Time Series Pattern (MODIS NDVI 시계열 패턴 변화를 이용한 산림식생변화 모니터링 방법론)

  • Jung, Myung-Hee;Lee, Sang-Hoon;Chang, Eun-Mi;Hong, Sung-Wook
    • Spatial Information Research
    • /
    • v.20 no.4
    • /
    • pp.47-55
    • /
    • 2012
  • Normalized Difference Vegetation Index (NDVI) has been used to measure and monitor plant growth, vegetation cover, and biomass from multispectral satellite data. It is also a valuable index in forest applications, providing forest resource information. In this research, an approach for monitoring forest change using MODIS NDVI time series data is explored. NDVI difference-based approaches for a specific point in time have possible accuracy problems and are lacking in monitoring long-term forest cover change. It means that a multi-time NDVI pattern change needs to be considered. In this study, an efficient methodology to consider long-term NDVI pattern is suggested using a harmonic model. The suggested method reconstructs MODIS NDVI time series data through application of the harmonic model, which corrects missing and erroneous data. Then NDVI pattern is analyzed based on estimated values of the harmonic model. The suggested method was applied to 49 NDVI time series data from Aug. 21, 2009 to Sep. 6, 2011 and its usefulness was shown through an experiment.

Vegetation Classification from Time Series NOAA/AVHRR Data

  • Yasuoka, Yoshifumi;Nakagawa, Ai;Kokubu, Keiko;Pahari, Krishna;Sugita, Mikio;Tamura, Masayuki
    • Proceedings of the KSRS Conference
    • /
    • 1999.11a
    • /
    • pp.429-432
    • /
    • 1999
  • Vegetation cover classification is examined based on a time series NOAA/AVHRR data. Time series data analysis methods including Fourier transform, Auto-Regressive (AR) model and temporal signature similarity matching are developed to extract phenological features of vegetation from a time series NDVI data from NOAA/AVHRR and to classify vegetation types. In the Fourier transform method, typical three spectral components expressing the phenological features of vegetation are selected for classification, and also in the AR model method AR coefficients are selected. In the temporal signature similarity matching method a new index evaluating the similarity of temporal pattern of the NDVI is introduced for classification.

  • PDF

Landscape Structure and Ecological Restoration of Mt. Hwangryung in Pusan, korea (부산시 황령산의 경관구조와 생태적 복원)

  • 이창석;조현제
    • The Korean Journal of Ecology
    • /
    • v.21 no.6
    • /
    • pp.791-797
    • /
    • 1998
  • An attempt to clarify the landscape structure of urban areas was carried out on Mt. Hwangryung located in the center of Pusan, southern Korea. By means of aerial photographs and field survey, a vegetation map including land-use pattern was made. Landscape structure was described by analyzing the vegetation map. Landscape element types were classified into secondary forest, introduced plantation, and other elements including urbanized area. almus firma and Pinus thunbergii communities, introduced plantation elements, formed matrix and some secondary forest elements and the other artificial plantations of small scale tended to distribute as small patches in such matrix. The number of patches per unit area in secondary forest elements was more than that in introduced plantation element. The result on patech size was vice versa. As the results of landscape ecological analyses, it was estimated that differentiation of patches recognized in community level would be related to artificial interference and those in sub-communities levels to natural process such as progression of succession. On the other hand, restoration plans in viewpoints of restoration and landscape ecology were suggested to improve ecological quality of Mt. hwangryung.

  • PDF

Community Classification and Vegetation Pattern of Quercus mongolica Forest in Mt. Myongji (명지산 신갈나무림의 군락분류와 식생패턴)

  • Lee, Ho-Joon;Lee, Jae-Seok;Byun, Doo-Weon
    • The Korean Journal of Ecology
    • /
    • v.17 no.2
    • /
    • pp.185-201
    • /
    • 1994
  • The Quercus mongolica forest vegetation of Mt. Myongji was classified into two communities including four subunit communities and one typical subunit community by the Z-M method as follows: Acer pseudo-sieboldianum-Quercus mongolica community group Quercus mongolica - Isodon excisus community Quercus mongolica - Styrax obassia community Quercus mongolica - Lespedeza bicolor subunit coummunity Quercus mongolica - Aconitum longecassidatum subunit community Quercus mongolica - Rhododendrom schlippenbachii subunit community Quercus mongolica - Cornus controversa subunit community Quercus mongolica - Styrax obassia typical subunit community Acer pseudo-sieboldianum - Quercus mongolica community group was distributed over the upper region of the altitude 400m, and the differential species in the community were Carex siderosticata, Sephanandra incisa, Tripterygium regelii, and Fraxinus rhynchophylla. The vegetation patterns for the slope and azimuth showed that the highest importance value for Quercus mongolica forest was observed on the broad subxeric area, and for Carpinus cordata and Acer pseudo-sieboldianum on the wet site, for Acer mono, Styrax obassia, Fraxinus rhynchophylla and Symplocos chinensis for. pilosa on the xeric site. The best habitat condition for Quercus mongolica was found at a subxeric site at the altitude of 700-900m on southern slope and that for Acer pseudo-sieboldianum at the 700-1100m on northern slope.

  • PDF

Spectal Characteristics of Dry-Vegetation Cover Types Observed by Hyperspectral Data

  • Lee Kyu-Sung;Kim Sun-Hwa;Ma Jeong-Rim;Kook Min-Jung;Shin Jung-Il;Eo Yang-Dam;Lee Yong-Woong
    • Korean Journal of Remote Sensing
    • /
    • v.22 no.3
    • /
    • pp.175-182
    • /
    • 2006
  • Because of the phenological variation of vegetation growth in temperate region, it is often difficult to accurately assess the surface conditions of agricultural croplands, grasslands, and disturbed forests by multi-spectral remote sensor data. In particular, the spectral similarity between soil and dry vegetation has been a primary problem to correctly appraise the surface conditions during the non-growing seasons in temperature region. This study analyzes the spectral characteristics of the mixture of dry vegetation and soil. The reflectance spectra were obtained from laboratory spectroradiometer measurement (GER-2600) and from EO-1 Hyperion image data. The reflectance spectra of several samples having different level of dry vegetation fractions show similar pattern from both lab measurement and hyperspectral image. Red-edge near 700nm and shortwave IR near 2,200nm are more sensitive to the fraction of dry vegetation. The use of hyperspectral data would allow us for better separation between bare soils and other surfaces covered by dry vegetation during the leaf-off season.

A Phytosociological Study of Hokkaido Vegetation, Japan (북해도 식생에 대한 식물사회학적 고찰)

  • Kim, Jong-Won
    • The Korean Journal of Ecology
    • /
    • v.12 no.2
    • /
    • pp.109-122
    • /
    • 1989
  • The vegetation and landscape of Hokkaido were phytosociologically referred. The region of F a g e t e a c r e n a t a e on Hokkaido is divided into two types of deciduous broad-leaved forest: the oak (Quercus mongolica var. grosseserrata) forests mixed with conifers (mainly Abies sachalinensis) and the beech (Fagus crenata) forests of northernmost distribution in far-east Asia. The oak forests, which is dominated by Quercus mongolica var. grosseserrata in Japanse islands, seem to be developed from different climatic and edaphic conditions, especially in the amount and sharing pattern of precipitation in a year, and weak acid brown forest soil, volcanic ash soil and sandy soil. On the all-inclusive phytogeographical view-point, Hokkaido is situated at northernmost region of F a g e t e a c r e n a t a e (cool-temperate zone)neighboring with subarctic and subalpine vegetation, vegetation, but the evergreen broad-leaved forest (C a m e l l i e t e a j a p o n i c a e, warm-temperate zone) is abscent.

  • PDF

The Environmental Change of Korea based on the Isopollen Map during the Holocene

  • Yoon, Soon-Ock
    • The Korean Journal of Quaternary Research
    • /
    • v.22 no.2
    • /
    • pp.6-11
    • /
    • 2008
  • Vegetation change reconstructed by pollen analysis is effective to clarify natural conditions such as climate and soil as well as intensity of human activity. Pollen analysis in Korea is difficult to obtain peaty soil sedimented by low relief geomorphollogically and formation age is usually confined to obtain information during young Holocene as well as little absolute age data. Isopollen map was constructed in order to analyze the change of vegetation environment time-spatially during Holocene based on the 30 data with age dated from 78 results from pollen analysis in Korea. The indicatives for vegetation environment were the main trees in Korea such as Alnus, Pinus, Quercus and AP/NAP during the periods of 6,000 y.BP, 4,000 y.BP, 3,000 y.BP, 2,000 y.BP, 1,000 y.BP. As a result, the regional time-spatial patterns of vegetation distribution appeared clearly on the isopollen map. The dominant vegetation stage was repeated in the different pattern e.g. the dominance between Alnus and Quercus at West Coast and between Pinus and Quercus at East Coast competitively.

  • PDF

Forest Vegetation Structures and Successional Trends in Young-il Soil Erosion Control District (영일사방사업지(迎日砂防事業地) 산림식생(山林植生)의 구성적(構成的) 특성(特性)과 천이경향(遷移傾向))

  • Cho, Hyun-Je
    • Journal of Korean Society of Forest Science
    • /
    • v.94 no.6
    • /
    • pp.453-461
    • /
    • 2005
  • Structural characteristics and successional trends of actual forest vegetation in Youngil soil erosion control district, South Korea, were studied and described by the phytosociological investigations and diameter measurement. And also the incremental growth pattern of the major trees for erosion control analyzed using increment core. Sixty-eight releves were sampled with $100m^2$ plots. Two main vegetation types (Lespedeza bicolor-Miscanthus sinensis-type and Alnus firma-Styrax japonica-type) have been distinguished and typified nine vegetation units. Constancy classes diagram showed that the higher species (${\geq}IV$) have only 2.6% and that most species occurred were rare and had low abundances. The successional trends of the actual forest vegetation would be mostly changed as Quercus serrata forest. Annual diameter growth was 3.0~3.4 mm in case of conifer (Pinus rigida and Pinus thunbergii), and the broad-leaved trees (Alnus firma, Robinia pseudo-acacia, and Alnus hirsuta) showed 4.3~4.9 mm. The incremental growth patterns showed to be decreased rapidly since twenty to twenty-five years regardless of the species of trees.

Time Series Analysis of SPOT VEGETATION Instrument Data for Identifying Agricultural Pattern of Irrigated and Non-irrigated Rice cultivation in Suphanburi Province, Thailand

  • Kamthonkiat, Daroonwan;Kiyoshi, Honda;Hugh, Turral;Tripathi, Nitin K.;Wuwongse, Vilas
    • Proceedings of the KSRS Conference
    • /
    • 2003.11a
    • /
    • pp.952-954
    • /
    • 2003
  • In this paper, we present the different characteristics of NDVI fluctuation pattern between irrigated and non-irrigated area in Suphanburi province, in Central Thailand. For non-irrigated rice cultivation area, there is a strong correlation between NDVI fluctuation and peak rainfall, while there is a lower correlation with irrigated area. In this study, the 'peak detector' classifier was developed to identify the area of non-irrigated and irrigated cropping and its cropping intensity (number of crops per year). This classifier was created based on cropping characteristics such as number of crops, time or planting period of each crop and its relationship with the peak of rainfall. The classified result showed good accuracy in identification irrigated and nonirrigated rice cultivation areas.

  • PDF

Improving Urban Vegetation Classification by Including Height Information Derived from High-Spatial Resolution Stereo Imagery

  • Myeong, Soo-Jeong
    • Korean Journal of Remote Sensing
    • /
    • v.21 no.5
    • /
    • pp.383-392
    • /
    • 2005
  • Vegetation classes, especially grass and tree classes, are often confused in classification when conventional spectral pattern recognition techniques are used to classify urban areas. This paper reports on a study to improve the classification results by using an automated process of considering height information in separating urban vegetation classes, specifically tree and grass, using three-band, high-spatial resolution, digital aerial imagery. Height information was derived photogrammetrically from stereo pair imagery using cross correlation image matching to estimate differential parallax for vegetation pixels. A threshold value of differential parallax was used to assess whether the original class was correct. The average increase in overall accuracy for three test stereo pairs was $7.8\%$, and detailed examination showed that pixels reclassified as grass improved the overall accuracy more than pixels reclassified as tree. Visual examination and statistical accuracy assessment of four test areas showed improvement in vegetation classification with the increase in accuracy ranging from $3.7\%\;to\;18.1\%$. Vegetation classification can, in fact, be improved by adding height information to the classification procedure.