• Title/Summary/Keyword: V373 cell

Search Result 18, Processing Time 0.101 seconds

Electrochemical Properties of Electric Double Layer Capacitor with PolyanilineComposite (Polyaniline Composite 전극을 사용한 전기 이중층 캐패시터의 전기화학적 특성)

  • 강광우;김종욱;구할본
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 1999.11a
    • /
    • pp.370-373
    • /
    • 1999
  • The purpose of this study is to research and develop PAn composite electrode for EDLC. EDLC cell of PAn composite electrode with 1M LiClO$_4$/PC brings out good capacitor performance below 4.0V. The radius of semicircle of PAn composite electrode adding 15wt% SP270 was absolutely small. The total resistance of EDLC cell mainly depended on internal resistance of the electrode. The discharge capacitance of PAn composite with 15wt% SP270 in 1st and 200th cycles was 42 and 42 F/g at current density of 1mA/cm$^2$. The capacitance of PAn composite with 15wt%. SP270 capacitor was larger than that of PAn capacitor without SP270. The coulombic efficiency of EDLC at discharge process of 1 and 200 cycles were 94 and 100% respectively. PAn composite EDLC with 15wt% SP270 content showed good capacitance and stability with cycling.

  • PDF

Electrical and Optical Properties of GZO Thin Films using Substrate Bias Voltage for Solar Cell (기판 바이어스 전압을 이용한 태양전지용 GZO 박막의 전기적, 광학적 특성)

  • Kwon, Soon-Il;Lee, Seok-Jin;Park, Seung-Bum;Jung, Tae-Hwan;Lim, Dong-Gun;Park, Jea-Hwan;Choi, Won-Seok;Park, Moon-Gi;Yang, Kea-Joon
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.22 no.5
    • /
    • pp.373-376
    • /
    • 2009
  • In this paper we report upon an investigation into the effect of DC bias voltage on the electrical and optical properties of Gallium doped zinc oxide (GZO) film. GZO films were deposited on glass substrate without substrate temperature by RF magnetron sputtering from a ZnO target mixed with 5 wt% $Ga_{2}O_{3}$. we investigated sample properties of bias voltage change in 0 to -60 V. We were able to achieve as low as $5.89{\times}10^{-4}{\Omega}cm$ and transmittance over 88 %. without substrate heating.

Design of Corase Flash Converter Using Floating Gate MOSFET (부유게이트를 이용한 코어스 플레쉬 변환기 설계)

  • Chae, Yong-Ung;Im, Sin-Il;Lee, Bong-Hwan
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.38 no.5
    • /
    • pp.367-373
    • /
    • 2001
  • A programmable A/D converter is designed with 8 N and P channel MOSFETs, respectively. In order to observe linear programmability of the EEPROM device during programming mode, a cell is developed with a 1.2 ${\mu}{\textrm}{m}$ double poly CMOS fabrication process in MOSIS. It is observed that the high resolution, of say 10m Volt, is valid in the range 1.25volts to 2volts. The experimental result is used for simulating the programmable 8 bit A/D converter with Hspice. The A/D converter is demonstrated to consume low power, 37㎽ by utilizing a programming operation. In addition, the converter is attained at the conversion frequency of 333 MHz.

  • PDF

Paraquat-Induced Apoptotic Cell Death in Lung Epithelial Cells (폐상피세포에서 Paraquat에 의한 아포프토시스에 관한 연구)

  • Song, Tak Ho;Yang, Joo Yeon;Jeong, In Kook;Park, Jae Seok;Jee, Young Koo;Kim, Youn Seup;Lee, Kye Young
    • Tuberculosis and Respiratory Diseases
    • /
    • v.61 no.4
    • /
    • pp.366-373
    • /
    • 2006
  • Background: Paraquat is extremely toxic chemical material, which generates reactive oxygen species (ROS), causing multiple organ failure. In particular, paraquat leads to irreversible progressive pulmonary fibrosis. Exaggerated cell deaths exceeding the normal repair of type II pneumocytes leads to mesenchymal cells proliferation and fibrosis. This study examined the followings; i) whether or not paraquat induces cell death in lung epithelial cells; ii) whether or not paraquat-induced cell deaths are apoptosis or necrosis; and iii) the effects of N-acetylcysteine, dexamethasone, and bcl-2 on paraquat-induced cell deaths. Methods: A549 and BEAS-2B lung epithelial cell lines were used. The cell viability and apoptosis were evalluated using a MTT assay, Annexin V staining was monitored by fluorescence microscopy, The level of bcl-2 inhibition was examined by establishing stable A549 pcDNA3-bcl-2 cell lines throung the transfection of pcDNA3-bcl-2 with the mock. Results: Paraquat decreased the cell viability in A549 and BEAS-2B cells in a dose and time dependent manner. The Annexin V assay showed that apoptosis was the type of paraquat-induced cell death. Paraquat-induced cell deaths was significantly inhibited by N-acetylcysteine, dexamethasone, and bcl-2 overexpression. The cell viability of A549 cells treated with N-acetylcysteine, and dexamethasone on the paraquat-induced cell deaths were increased significantly by 10 ~ 20%, particularly at high doses. In addition, the cell viability of A549 pcDNA3-bcl-2 cells overexpressing bcl-2 was significantly higher than the untransfected A549 cells. Conclusion: Paraquat induces apoptotic cell deaths in lung epithelial cells in a dose and time dependent manner. The paraquat-induced apoptosis of lung epithelial cells might occur through the mitochondrial pathway.

Iontophoretic Delivery of Levodopa: Permeation Enhancement by Oleic Acid Microemulsion and Ethanol (Levodopa의 이온토포레시스 경피전달: 올레인산 아이크로에멀젼 및 에탄올의 투과증진)

  • Jung, Shin-Ae;Gwak, Hye-Sun;Chun, In-Koo;Oh, Seaung-Youl
    • Journal of Pharmaceutical Investigation
    • /
    • v.38 no.6
    • /
    • pp.373-380
    • /
    • 2008
  • In order to develop optimal formulation and iontophoresis condition for the transdermal delivery of levodopa, we have evaluated the effect of two permeation enhancers, ethanol and oleic acid in microemulsion, on transdermal delivery of levodopa. In vitro flux studies were performed at $33^{\circ}C$, using side-by-side diffusion cell and full thickness hairless mouse skin. Current density applied was $0.4\;mA/cm^2$ and current was off after 6 hours application. Levodopa was analysed by HPLC at 280 nm. The o/w microemulsions of oleic acid in buffer solution (pH 2.5 & 4.5) were prepared using oleic acid, Tween 80 and ethanol. The existence of microemulsion regions were investigated in pseudo-ternary phase diagrams. Contrary to our expectation, cumulative amount of levodopa transported from microemulsion (pH 2.5) for 10 hours was similar to that from aqueous solution in all delivery methods (passive, anodal and cathodal). When pH of the micro-emulsion was pH 4.5, cumulative amount of levodopa transported for 10 hours increased about 40% (anodal) to 50% (cathodal), when compared to that from aqueous solution. Flux from pH 4.5 microemulsion showed higher value than that from pH 2.5 in all delivery methods. These results seem to indicate that electroosmosis plays more dominant role than electrorepulsion in the flux of levodopa at pH 2.5. The effect of ethanol on iontophoretic flux was studied using pH 2.5 phosphate buffer solution containing 3% or 5% (v/v) ethanol. Flux enhancement was observed in passive and anodal delivery as the concentration of the ethanol increased. Without ethanol, cathodal delivery showed higher flux than anodal delivery. Anodal delivery increased the cumulative amount of levodopa transported 1.6 fold by 5% ethanol after 10 hours. However, in cathodal delivery, no flux enhancement of levodopa was observed during current application and only marginal increase in cumulative amount transported after 10 hours was observed by 5% ethanol. These results seem to be related to the decrease in dielectric constant of the medium and the lipid extraction of the ethanol, which decrease the electroosmotic flow, and thus decrease the flux. Overall, the results provide important insights into the role of electroosmosis and electrorepulsion in the transport of levodopa through skin, and provide some useful informations for optimal formulation for levodopa.

Electrophysiological Characteristics of Six Mutations in hClC-1 of Korean Patients with Myotonia Congenita

  • Ha, Kotdaji;Kim, Sung-Young;Hong, Chansik;Myeong, Jongyun;Shin, Jin-Hong;Kim, Dae-Seong;Jeon, Ju-Hong;So, Insuk
    • Molecules and Cells
    • /
    • v.37 no.3
    • /
    • pp.202-212
    • /
    • 2014
  • ClC-1 is a member of a large family of voltage-gated chloride channels, abundantly expressed in human skeletal muscle. Mutations in ClC-1 are associated with myotonia congenita (MC) and result in loss of regulation of membrane excitability in skeletal muscle. We studied the electrophysiological characteristics of six mutants found among Korean MC patients, using patch clamp methods in HEK293 cells. Here, we found that the autosomal dominant mutants S189C and P480S displayed reduced chloride conductances compared to WT. Autosomal recessive mutant M128I did not show a typical rapid deactivation of Cl- currents. While sporadic mutant G523D displayed sustained activation of $Cl^-$ currents in the whole cell traces, the other sporadic mutants, M373L and M609K, demonstrated rapid deactivations. $V_{1/2}$ of these mutants was shifted to more depolarizing potentials. In order to identify potential effects on gating processes, slow and fast gating was analyzed for each mutant. We show that slow gating of the mutants tends to be shifted toward more positive potentials in comparison to WT. Collectively, these six mutants found among Korean patients demonstrated modifications of channel gating behaviors and reduced chloride conductances that likely contribute to the physiologic changes of MC.

Pro-Apoptotic Activity of 4-Isopropyl-2-(1-Phenylethyl) Aniline Isolated from Cordyceps bassiana

  • Kim, Mi Seon;Lee, Yunmi;Sung, Gi-Ho;Kim, Ji Hye;Park, Jae Gwang;Kim, Han Gyung;Baek, Kwang Soo;Cho, Jae Han;Han, Jaegu;Lee, Kang-Hyo;Hong, Sungyoul;Kim, Jong-Hoon;Cho, Jae Youl
    • Biomolecules & Therapeutics
    • /
    • v.23 no.4
    • /
    • pp.367-373
    • /
    • 2015
  • Cordyceps species including Cordyceps bassiana are a notable anti-cancer dietary supplement. Previously, we identified several compounds with anti-cancer activity from the butanol fraction (Cb-BF) of Cordyceps bassiana. To expand the structural value of Cb-BF-derived anti-cancer drugs, we employed various chemical moieties to produce a novel Cb-BF-derived chemical derivative, KTH-13-amine-monophenyl [4-isopropyl-2-(1-phenylethyl) aniline (KTH-13-AMP)], which we tested for anti-cancer activity. KTH-13-AMP suppressed the proliferation of MDA-MB-231, HeLa, and C6 glioma cells. KTH-13-AMP also dose-dependently induced morphological changes in C6 glioma cells and time-dependently increased the level of early apoptotic cells stained with annexin V-FITC. Furthermore, the levels of the active full-length forms of caspase-3 and caspase-9 were increased. In contrast, the levels of total forms of caspases-3, caspase-8, caspase-9, and Bcl-2 were decreased in KTH-13-AMP treated-cells. We also confirmed that the phosphorylation of STAT3, Src, and PI3K/p85, which is linked to cell survival, was diminished by treatment with KTH-13-AMP. Therefore, these results strongly suggest that this compound can be used to guide the development of an anti-cancer drug or serve as a lead compound in forming another strong anti-proliferative agent.

Tributyltin Induces Adipogenesis and Apoptosis of Rat Thymic Epithelial Cells (Tributyltin에 의한 흰쥐 흉선 내 상피세포의 지방세포 유도와 세포자연사 증가)

  • Lee, Hyo-Jin;Lee, A-Ra;Ahn, Bo-Ram;Jeon, Eun-Je;Jeong, Ye-Ji;Yang, Hyun-Won
    • Development and Reproduction
    • /
    • v.15 no.4
    • /
    • pp.373-383
    • /
    • 2011
  • Tributyltin (TBT) is one of endocrine disrupters which are known as having similar function to sex steroid hormone inducing apoptosis in various tissues of rodents. Recently, it has been reported that TBT induces apoptosis in thymus causing the decreased thymic function, but little is known about the mechanism. To elucidate the mechanism, three-week-old SD female rats were orally administrated with TBT 1, 10, and 25 mg per body weight (kg) and sesame oil as a control for 7 days. On day 8, the thymi were obtained and weighed, and then the number of thymocytes was counted. We also performed H&E staining, TUNEL assay, and Annexin V flow cytometric analysis to examine the apoptosis rates and the structure in the thymus. Next, we investigated the adipogenesis and apoptosis-related mRNA expression levels in the thymi by real-time PCR. The thymic weight and the number of thymocytes were decreased by TBT in a dose-dependent manner. As a result of the H&E staining, the boundary between cortical and medullary area was blurred in the thymi of TBT treated rats compared to those of controls. In the results of TUNEL assay and Annexin V flow cytometric analysis, apoptosis rates in the thymus were increased after TBT treatment. The expression levels of thymic epithelial cell marker genes such as EVA, KGF, AIRE, and IL-7 were significantly decreased in the thymi of TBT treated rats, but $PPAR{\gamma}$, aP2, PEPCK, and CD36 were significantly increased. The expression of $TNF{\alpha}$ and TNFR1 as apoptosis-related genes also was significantly increased after TBT treatment. The present study demonstrates that TBT can increase the expression of adipogenesis and apoptosis-related genes leading to apoptosis in the thymus. These results suggest that the increased adipogenesis of thymus by TBT exposure might induce apoptosis in the thymus resulting in a loss in thymic immune function.