• 제목/요약/키워드: V-Model

검색결과 3,779건 처리시간 0.032초

800kV GIS용 모델 가스 차단기의 개발 (Development of Model $SF_6$ GCB for 800kV GIS)

  • 송원표;김정배;이철현;노철웅;신영준;박경엽
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1994년도 하계학술대회 논문집 A
    • /
    • pp.55-56
    • /
    • 1994
  • KEPCO is now driving forward the raising of transmission-line-voltage from 345kV to 765kV for the stabilization of network and as the counter measure of the rapid-increasing of domestic electric power demands. 800kV GIS is one of the most important apparatuses in the 765kV substation and we are developing the Model $SF_6$ GCB for the GIS now. We'll explain the present condition of development of 800kV $SF_6$ GCB until now.

  • PDF

Thermal Striping 해석 난류모델 평가 (EVALUATION OF TURBULENCE MODELS FOR ANALYSIS OF THERMAL STRIPING)

  • 최석기;김세윤;김성오
    • 한국전산유체공학회지
    • /
    • 제10권4호통권31호
    • /
    • pp.1-11
    • /
    • 2005
  • A numerical study of the evaluation of turbulence models for thermal striping phenomenon is performed. The turbulence models chosen in the present study are the two-layer model, the shear stress transport (SST) model and the V2-f model. These three models are applied to the analysis of the triple-jet flow with the same velocity but different temperatures. The unsteady Reynolds-averaged Navier-Stokes (URANS) equation method is used together with the SIMPLEC algorithm. The results of the present study show that the temporal oscillation of temperature is predicted by the SST and V2-f models, and the accuracy of the mean velocity, the turbulent shear stress and the mean temperature is a little dependent on the turbulence model used. In addition, it is shown that both the two-layer and SST models have nearly the same capability predicting the thermal striping, and the amplitude of the temperature fluctuation is predicted best by the V2-f model.

NEUTRON CROSS SECTION DATA LIBRARY FOR PD-105, AG-109, XE-131 AND CS-133

  • LEE Y. D.;CHANG J. H.
    • Nuclear Engineering and Technology
    • /
    • 제37권1호
    • /
    • pp.101-108
    • /
    • 2005
  • The neutron induced nuclear cross-section data for Pd-105, Ag-109, Xe-131, and Cs-133 were calculated and evaluated from an unresolved energy to 20 MeV. The energy dependent optical model potential parameters were extracted based on recent experimental data and applied up to 20 MeV. A spherical optical model and a statistical model for the equilibrium energy, and a multistep direct and a multistep compound model for the pre-equilibrium energy were used in the calculation. The direct capture model was recently introduced for fast neutron capture. The theoretically calculated cross-sections were compared with the experimental data and the evaluated files. The total and capture cross-sections calculated using the model were in good agreement with the reference experimental data. The evaluated cross-section results were compiled in ENDF-6 format and merged with the resonance component, already adopted in the ENDF/B-VI release 8. New data library files covering from thermal to 20 MeV were created. They are at the preliminary stage of an ENDF/B- VII release.

Neutron Cross Section Evaluation on Pr-141, Nd-143, Nd-145, Sm-147 and Sm-149

  • Lee, Y. D.;J. H. Chang
    • Nuclear Engineering and Technology
    • /
    • 제34권4호
    • /
    • pp.370-381
    • /
    • 2002
  • The neutron induced nuclear data for Pr-141, Nd-143, Nd-145, Sm-147 and Sm-149 were calculated and evaluated from 10 keV to 20 MeV. The energy dependent optical model potential parameters were extracted based on the recent experimental data and applied up to 20 MeV. The s-wave strength function was calculated. Spherical optical model , statistical model in equilibrium energy, multistep direct and multistep compound model in pre-equilibrium energy and direct capture model were introduced in Empire calculation. The theoretically calculated cross sections were compared with the experimental data and the evaluated files. The model calculated total and capture cross sections were in good agreement with the reference experimental data. The capture cross sections in pre-equilibrium were enhanced in recent released Empire version. The evaluated cross section results were compiled to ENDF-6 format and will improve the ENDF/B-Vl.

Ellipting Blending Model에 의한 자연대류 및 열성층 해석 (COMPUTATION OF NATURAL CONVECTION AND THERMAL STRATIFICATION USING THE ELLIPTIC BLENDING MODEL)

  • 최석기;김성오
    • 한국전산유체공학회:학술대회논문집
    • /
    • 한국전산유체공학회 2006년도 추계 학술대회논문집
    • /
    • pp.77-82
    • /
    • 2006
  • Evaluation of the elliptic blending turbulence model (EBM) together with the two-layer model, shear stress transport (SST) model and elliptic relaxation model (V2-F) is performed for a better prediction of natural convection and thermal stratification. For a natural convection problem the models are applied to the prediction of a natural convection in a rectangular cavity and the computed results are compared with the experimental data. It is shown that the elliptic blending model predicts as good as or better than the existing second moment differential stress and flux model for the mean velocity and turbulent quantities. For thermal stratification problem the models are applied to the thermal stratification in the upper plenum of liquid metal reactor. In this analysis there exist much differences between the turbulence models in predicting the temporal variation of temperature. The V2-F model and EBM better predict the steep gradient of temperature at the interface of thermal stratification, and the V2-F model and EBM predict properly the oscillation of temperature. The two-layer model and SST model fail to predict the temporal oscillation of temperature.

  • PDF

A unified approach to shear and torsion in reinforced concrete

  • Rahal, Khaldoun N.
    • Structural Engineering and Mechanics
    • /
    • 제77권5호
    • /
    • pp.691-703
    • /
    • 2021
  • Reinforced concrete (RC) beams can be subjected to a complex combination of shear forces (V), torsional moments (T), flexural moments (M) and axial loads (N). This paper proposes a unified approach for the analysis of these elements. An existing model for the analysis of orthogonally reinforced concrete membrane elements subjected to in-plane shear and normal stresses is generalized to apply to the case of beams subjected to the complex loading. The combination of V and T can be critical. Torsion is modelled using the hollow-tube analogy. A direct equation for the calculation of the thickness of the equivalent hollow tube is proposed, and the shear stresses caused by V and T are combined using a simple approach. The development and the evaluation of the model are described. The calculations of the model are compared to experimental data from 350 beams subjected to various combinations of stress-resultants and to the calculations of the ACI and the CSA codes. The proposed model provides the most favorable results. It is also shown that it can accurately model the interaction between V and T. The proposed model provides a unified treatment of shear in beams subjected to complex stress-resultants and in thin membrane elements subjected to in-plane stresses.

건강한 성인에서의 알코올의 집단 약물동태/약물동력에 미치는 산소의 영향 연구 (Influence of Oxygen to Population Pharmacokinetics/Pharmacodynamics of Alcohol in Healthy Volunteers)

  • 송병정;백현문;황시영;채정우;윤휘열;권광일
    • 한국임상약학회지
    • /
    • 제27권4호
    • /
    • pp.258-266
    • /
    • 2017
  • Objective: To develop a population pharmacokinetics (PK)/pharmacodynamics (PD) model for alcohol in healthy volunteers and to elucidate individual characteristics to affects alcohol's PK or PD including dissolved oxygen. Methods: Following multiple intakes of total 540 mL alcohol (19.42 v/v%) to healthy volunteer, blood alcohol concentration was measured using a Breathe alcohol analyser (Lion SD-400 $Alcolmeter^{(R)}$). A sequential population PK/PD modeling was performed using NONMEM (ver 7.3). Results: Eighteen healthy volunteer were included in the study. PK model of alcohol was well explained by one-compartment model with first-order absorption and Michaelis-Menten elimination kinetics. $K_a$, V/F, $V_{max}$, $K_m$ is $8.1hr^{-1}$, 73.7 L, 9.65 g/hr, 0.041 g/L, respectively. Covariate analysis revealed that gender significantly influenced $V_{max}$ (Male vs Female, 9.65 g/hr vs 7.38 g/hr). PD model of temporary systolic blood pressure decreasing effect of alcohol was explained by biophase model with inhibitory $E_{max}$ model. $K_{e0}$, $I_{max}$, $E_0$, $IC_{50}$ were $0.23hr^{-1}$, 44.9 mmHg, 138 mmHg, 0.693 g/L, respectively. Conclusion: Model evaluation results suggested that this PK/PD model was robust and has good precision.

PBL 계약을 위한 수리부속 재고비용 예측과 V-METRIC의 활용에 관한 연구 (A Study on the Repair Parts Inventory Cost Estimation and V-METRIC Application for PBL Contract)

  • 김윤화;이성용
    • 시스템엔지니어링학술지
    • /
    • 제13권1호
    • /
    • pp.79-88
    • /
    • 2017
  • For the PBL contract, it is necessary for the contracting parties to share information regarding the reasonable inventory-level and the cost of its repair parts for the estimated demand. There are various models which can be used for this purpose. Among them, V-METRIC model is considered to be the most efficient and is most frequently applied. However, this model is usually used for optimizing the inventory level of the repair parts of the system under operation. The model uses a time series forecast model to determine the demand rate, which is a mandatory input factor for the model, based on past field data. However, since the system at the deployment stage has no operational performance record, it is necessary to find another alternative to be used as the demand rate of the model application. This research applies the V-METRIC model to find the optimal inventory level and cost estimation for repairable items to meet the target operational availability, which is a key performance indicator, at the time of the PBL contract for the deployment system. This study uses the calculated value based on the allocated MTBF to the system as the demand rate, which is used as input data for the model. Also, we would like to examine changes in inventory level and cost according to the changes in target operational availability and MTBF allocation.

고온초전도 변압기를 위한 턴간 모델의 V-t 특성 및 생존 확률 (V-t Characteristics and Survival Probability of Turn-to-Turn Models for HTS Transformer)

  • 백승명;천현권;;석복렬;김상현
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2004년도 추계학술대회 논문집 Vol.17
    • /
    • pp.356-362
    • /
    • 2004
  • Using multi wrapped copper by polyimide film for HTS transformer, the breakdown and V-t characteristics of two type models for turn-to-turn, one is point contact model, the other is surface contact model, were investigated under ac and impulse voltage at 77 K. A material that is Polyimide film (Kapton) 0.025 mm thickness is used for multi wrapping of the electrode. Statistical analysis of the results using Weibull distribution to examine the wrapping number effects on V-t characteristics under at voltage as well as breakdown voltage under ac and impulse voltage in $LN_2$ was carried. Also, survival analysis was performed according to the Kaplan-Meier method. The breakdown voltages for surface contact model are lower than that of the point contact model, because the contact area of surface contact model is wider than that of point contact model. At the same time, the shape parameter of the point contact model is a little bit larger than the of the surface contact model. The time to breakdown tn is decreased as the applied voltage is increased, and the lifetime indices slightly are increased as the number of layers is increased. According to the increasing applied voltage and decreasing wrapping number, the survival probability is increased.

  • PDF

Computational analysis of SARS-CoV-2, SARS-CoV, and MERS-CoV genome using MEGA

  • Sohpal, Vipan Kumar
    • Genomics & Informatics
    • /
    • 제18권3호
    • /
    • pp.30.1-30.7
    • /
    • 2020
  • The novel coronavirus pandemic that has originated from China and spread throughout the world in three months. Genome of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) predecessor, severe acute respiratory syndrome coronavirus (SARS-CoV) and Middle East respiratory syndrome coronavirus (MERS-CoV) play an important role in understanding the concept of genetic variation. In this paper, the genomic data accessed from National Center for Biotechnology Information (NCBI) through Molecular Evolutionary Genetic Analysis (MEGA) for statistical analysis. Firstly, the Bayesian information criterion (BIC) and Akaike information criterion (AICc) are used to evaluate the best substitution pattern. Secondly, the maximum likelihood method used to estimate of transition/transversions (R) through Kimura-2, Tamura-3, Hasegawa-Kishino-Yano, and Tamura-Nei nucleotide substitutions model. Thirdly and finally nucleotide frequencies computed based on genomic data of NCBI. The results indicate that general times reversible model has the lowest BIC and AICc score 347,394 and 347,287, respectively. The transition/transversions bias for nucleotide substitutions models varies from 0.56 to 0.59 in MEGA output. The average nitrogenous bases frequency of U, C, A, and G are 31.74, 19.48, 28.04, and 20.74, respectively in percentages. Overall the genomic data analysis of SARS-CoV-2, SARS-CoV, and MERS-CoV highlights the close genetic relationship.