• 제목/요약/키워드: Uzawa method

검색결과 11건 처리시간 0.028초

가속 Uzawa 방법을 이용한 유도전하계산법 (Induced Charge Distribution Using Accelerated Uzawa Method)

  • 김재현;조광현;하윤도
    • 한국전산구조공학회논문집
    • /
    • 제34권4호
    • /
    • pp.191-197
    • /
    • 2021
  • 분자동역학에서의 원자들의 유도전하를 계산하기 위해서는 유도전하를 미지수로 하는 선형방정식을 풀어야 하는데 원자들의 위치가 변화할 때마다 필요한 계산이므로 상당한 계산비용이 요구된다. 따라서 효율적인 유도전하 계산 방법은 다양한 시스템을 해석하기 위해서 필수적이다. 본 연구에서는 constraints가 존재하는 Lagrange 방정식의 해에 대한 선형 시스템, 즉 saddle point를 가지는 문제를 해결하기 위해서 Uzawa method를 도입하였다. Uzawa 매개변수가 수렴 속도에 영향을 미치는 단점을 극복하고 행렬 연산의 효율성을 위해서 Schur complement와 preconditioned conjugate gradient (PCG) 방법을 통해 계산의 효율성을 극대화하는 가속 Uzawa algorithm을 적용한다. 두 금속 나노입자가 전기장에 놓여진 분자동역학 수치모델을 통해서 제시된 방법이 유도전하계산의 수렴성, 효율성 측면에서 모두 향상된 결과를 도출함을 확인하였다. 특히 기존의 가우스 소거법에 의한 계산보다 약 1/10으로 계산비용이 절감되었고, 기본 Uzawa method에 비하여 conjugate gradient (CG)의 높은 수렴성이 입증되었다.

OPTIMAL ERROR ESTIMATE FOR SEMI-DISCRETE GAUGE-UZAWA METHOD FOR THE NAVIER-STOKES EQUATIONS

  • Pyo, Jae-Hong
    • 대한수학회보
    • /
    • 제46권4호
    • /
    • pp.627-644
    • /
    • 2009
  • The gauge-Uzawa method which has been constructed in [11] is a projection type method to solve the evolution Navier-Stokes equations. The method overcomes many shortcomings of projection methods and displays superior numerical performance [11, 12, 15, 16]. However, we have obtained only suboptimal accuracy via the energy estimate in [11]. In this paper, we study semi-discrete gauge-Uzawa method to prove optimal accuracy via energy estimate. The main key in this proof is to construct the intermediate equation which is formed to gauge-Uzawa algorithm. We will estimate velocity errors via comparing with the intermediate equation and then evaluate pressure errors via subtracting gauge-Uzawa algorithm from Navier-Stokes equations.

SEMI-CONVERGENCE OF THE PARAMETERIZED INEXACT UZAWA METHOD FOR SINGULAR SADDLE POINT PROBLEMS

  • YUN, JAE HEON
    • 대한수학회보
    • /
    • 제52권5호
    • /
    • pp.1669-1681
    • /
    • 2015
  • In this paper, we provide semi-convergence results of the parameterized inexact Uzawa method with singular preconditioners for solving singular saddle point problems. We also provide numerical experiments to examine the effectiveness of the parameterized inexact Uzawa method with singular preconditioners.

A CLASSIFICATION OF THE SECOND ORDER PROJECTION METHODS TO SOLVE THE NAVIER-STOKES EQUATIONS

  • Pyo, Jae-Hong
    • Korean Journal of Mathematics
    • /
    • 제22권4호
    • /
    • pp.645-658
    • /
    • 2014
  • Many projection methods have been progressively constructed to find more accurate and efficient solution of the Navier-Stokes equations. In this paper, we consider most recently constructed projection methods: the pressure correction method, the gauge method, the consistent splitting method, the Gauge-Uzawa method, and the stabilized Gauge-Uzawa method. Each method has different background and theoretical proof. We prove equivalentness of the pressure correction method and the stabilized Gauge-Uzawa method. Also we will obtain that the Gauge-Uzawa method is equivalent to the gauge method and the consistent splitting method. We gather theoretical results of them and conclude that the results are also valid on other equivalent methods.

AN OVERVIEW OF BDF2 GAUGE-UZAWA METHODS FOR INCOMPRESSIBLE FLOWS

  • Pyo, Jae-Hong
    • Journal of the Korean Society for Industrial and Applied Mathematics
    • /
    • 제15권3호
    • /
    • pp.233-251
    • /
    • 2011
  • The Gauge-Uzawa method [GUM] in [9] which is a projection type algorithm to solve evolution Navier-Stokes equations has many advantages and superior performance. But this method has been studied for backward Euler time discrete scheme which is the first order technique, because the classical second order GUM requests rather strong stability condition. Recently, the second order time discrete GUM was modified to be unconditionally stable and estimated errors in [12]. In this paper, we contemplate several GUMs which can be derived by the same manner within [12], and we dig out properties of them for both stability and accuracy. In addition, we evaluate an stability condition for the classical GUM to construct an adaptive GUM for time to make free from strong stability condition of the classical GUM.

ERROR ESTIMATES FOR THE FULLY DISCRETE STABILIZED GAUGE-UZAWA METHOD -PART I: THE NAVIER-STOKES EQUATIONS

  • Pyo, Jae-Hong
    • Korean Journal of Mathematics
    • /
    • 제21권2호
    • /
    • pp.125-150
    • /
    • 2013
  • The stabilized Gauge-Uzawa method (SGUM), which is a second order projection type algorithm to solve the time-dependent Navier-Stokes equations, has been newly constructed in 2013 Pyo's paper. The accuracy of SGUM has been proved only for time discrete scheme in the same paper, but it is crucial to study for fully discrete scheme, because the numerical errors depend on discretizations for both space and time, and because discrete spaces between velocity and pressure can not be chosen arbitrary. In this paper, we find out properties of the fully discrete SGUM and estimate its errors and stability to solve the evolution Navier-Stokes equations. The main difficulty in this estimation arises from losing some cancellation laws due to failing divergence free condition of the discrete velocity function. This result will be extended to Boussinesq equations in the continuous research (part II) and is essential in the study of part II.

THE SECOND-ORDER STABILIZED GAUGE-UZAWA METHOD FOR INCOMPRESSIBLE FLOWS WITH VARIABLE DENSITY

  • Kim, Taek-cheol;Pyo, Jae-Hong
    • Korean Journal of Mathematics
    • /
    • 제27권1호
    • /
    • pp.193-219
    • /
    • 2019
  • The Navier-Stokes equations with variable density are challenging problems in numerical analysis community. We recently built the 2nd order stabilized Gauge-Uzawa method [SGUM] to solve the Navier-Stokes equations with constant density and have estimated theoretically optimal accuracy. Also we proved that SGUM is unconditionally stable. In this paper, we apply SGUM to the Navier-Stokes equations with nonconstant variable density and find out the stability condition of the algorithms. Because the condition is rather strong to apply to real problems, we consider Allen-Cahn scheme to construct unconditionally stable scheme.

THE STABILITY OF GAUGE-UZAWA METHOD TO SOLVE NANOFLUID

  • JANG, DEOK-KYU;KIM, TAEK-CHEOL;PYO, JAE-HONG
    • Journal of the Korean Society for Industrial and Applied Mathematics
    • /
    • 제24권2호
    • /
    • pp.121-141
    • /
    • 2020
  • Nanofluids is the fluids mixed with nanoscale particles and the mixed nano size materials affect heat transport. Researchers in this field has been focused on modeling and numerical computation by engineers In this paper, we analyze stability constraint of the dominant equations and check validate of the condition for most kinds of materials. So we mathematically analyze stability of the system. Also we apply Gauge-Uzawa algorithm to solve the system and prove stability of the method.

UNCONDITIONALLY STABLE GAUGE-UZAWA FINITE ELEMENT METHODS FOR THE DARCY-BRINKMAN EQUATIONS DRIVEN BY TEMPERATURE AND SALT CONCENTRATION

  • Yangwei Liao;Demin Liu
    • 대한수학회보
    • /
    • 제61권1호
    • /
    • pp.93-115
    • /
    • 2024
  • In this paper, the Gauge-Uzawa methods for the Darcy-Brinkman equations driven by temperature and salt concentration (DBTC) are proposed. The first order backward difference formula is adopted to approximate the time derivative term, and the linear term is treated implicitly, the nonlinear terms are treated semi-implicit. In each time step, the coupling elliptic problems of velocity, temperature and salt concentration are solved, and then the pressure is solved. The unconditional stability and error estimations of the first order semi-discrete scheme are derived, at the same time, the unconditional stability of the first order fully discrete scheme is obtained. Some numerical experiments verify the theoretical prediction and show the effectiveness of the proposed methods.