• Title/Summary/Keyword: Utility-Based Data Mining

Search Result 28, Processing Time 0.026 seconds

Performance Analysis of Siding Window based Stream High Utility Pattern Mining Methods (슬라이딩 윈도우 기반의 스트림 하이 유틸리티 패턴 마이닝 기법 성능분석)

  • Ryang, Heungmo;Yun, Unil
    • Journal of Internet Computing and Services
    • /
    • v.17 no.6
    • /
    • pp.53-59
    • /
    • 2016
  • Recently, huge stream data have been generated in real time from various applications such as wireless sensor networks, Internet of Things services, and social network services. For this reason, to develop an efficient method have become one of significant issues in order to discover useful information from such data by processing and analyzing them and employing the information for better decision making. Since stream data are generated continuously and rapidly, there is a need to deal with them through the minimum access. In addition, an appropriate method is required to analyze stream data in resource limited environments where fast processing with low power consumption is necessary. To address this issue, the sliding window model has been proposed and researched. Meanwhile, one of data mining techniques for finding meaningful information from huge data, pattern mining extracts such information in pattern forms. Frequency-based traditional pattern mining can process only binary databases and treats items in the databases with the same importance. As a result, frequent pattern mining has a disadvantage that cannot reflect characteristics of real databases although it has played an essential role in the data mining field. From this aspect, high utility pattern mining has suggested for discovering more meaningful information from non-binary databases with the consideration of the characteristics and relative importance of items. General high utility pattern mining methods for static databases, however, are not suitable for handling stream data. To address this issue, sliding window based high utility pattern mining has been proposed for finding significant information from stream data in resource limited environments by considering their characteristics and processing them efficiently. In this paper, we conduct various experiments with datasets for performance evaluation of sliding window based high utility pattern mining algorithms and analyze experimental results, through which we study their characteristics and direction of improvement.

An Efficient Approach for Single-Pass Mining of Web Traversal Sequences (단일 스캔을 통한 웹 방문 패턴의 탐색 기법)

  • Kim, Nak-Min;Jeong, Byeong-Soo;Ahmed, Chowdhury Farhan
    • Journal of KIISE:Databases
    • /
    • v.37 no.5
    • /
    • pp.221-227
    • /
    • 2010
  • Web access sequence mining can discover the frequently accessed web pages pursued by users. Utility-based web access sequence mining handles non-binary occurrences of web pages and extracts more useful knowledge from web logs. However, the existing utility-based web access sequence mining approach considers web access sequences from the very beginning of web logs and therefore it is not suitable for mining data streams where the volume of data is huge and unbounded. At the same time, it cannot find the recent change of knowledge in data streams adaptively. The existing approach has many other limitations such as considering only forward references of web access sequences, suffers in the level-wise candidate generation-and-test methodology, needs several database scans, etc. In this paper, we propose a new approach for high utility web access sequence mining over data streams with a sliding window method. Our approach can not only handle large-scale data but also efficiently discover the recently generated information from data streams. Moreover, it can solve the other limitations of the existing algorithm over data streams. Extensive performance analyses show that our approach is very efficient and outperforms the existing algorithm.

A single-phase algorithm for mining high utility itemsets using compressed tree structures

  • Bhat B, Anup;SV, Harish;M, Geetha
    • ETRI Journal
    • /
    • v.43 no.6
    • /
    • pp.1024-1037
    • /
    • 2021
  • Mining high utility itemsets (HUIs) from transaction databases considers such factors as the unit profit and quantity of purchased items. Two-phase tree-based algorithms transform a database into compressed tree structures and generate candidate patterns through a recursive pattern-growth procedure. This procedure requires a lot of memory and time to construct conditional pattern trees. To address this issue, this study employs two compressed tree structures, namely, Utility Count Tree and String Utility Tree, to enumerate valid patterns and thus promote fast utility computation. Furthermore, the study presents an algorithm called single-phase utility computation (SPUC) that leverages these two tree structures to mine HUIs in a single phase by incorporating novel pruning strategies. Experiments conducted on both real and synthetic datasets demonstrate the superior performance of SPUC compared with IHUP, UP-Growth, and UP-Growth+algorithms.

High Utility Itemset Mining Using Transaction Utility of Itemsets (항목집합의 트랜잭션 유틸리티를 이용한 높은 유틸리티 항목집합 마이닝)

  • Lee, Serin;Park, Jong Soo
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.4 no.11
    • /
    • pp.499-508
    • /
    • 2015
  • High utility itemset(HUI) mining refers to the discovery of itemsets with high utilities which are not less than a user-specified minimum utility threshold, by considering both the quantities and weight factors of items in a transaction database. Recently the utility-list based HUI mining algorithms have been proposed to avoid numerous candidate itemsets and the algorithms need the costly join operations. In this paper, we propose a new HUI mining algorithm, using the utility-list with additional attributes of transaction utility and common utility of itemsets. The new algorithm decreases the number of join operations and efficiently prunes the search space. Experimental results on both synthetic and real datasets show that the proposed algorithm outperforms other recent algorithms in runtime, especially when datasets are dense or contain many long transactions.

Multi-Sized cumulative Summary Structure Driven Light Weight in Frequent Closed Itemset Mining to Increase High Utility

  • Siva S;Shilpa Chaudhari
    • Journal of information and communication convergence engineering
    • /
    • v.21 no.2
    • /
    • pp.117-129
    • /
    • 2023
  • High-utility itemset mining (HIUM) has emerged as a key data-mining paradigm for object-of-interest identification and recommendation systems that serve as frequent itemset identification tools, product or service recommendation systems, etc. Recently, it has gained widespread attention owing to its increasing role in business intelligence, top-N recommendation, and other enterprise solutions. Despite the increasing significance and the inability to provide swift and more accurate predictions, most at-hand solutions, including frequent itemset mining, HUIM, and high average- and fast high-utility itemset mining, are limited to coping with real-time enterprise demands. Moreover, complex computations and high memory exhaustion limit their scalability as enterprise solutions. To address these limitations, this study proposes a model to extract high-utility frequent closed itemsets based on an improved cumulative summary list structure (CSLFC-HUIM) to reduce an optimal set of candidate items in the search space. Moreover, it employs the lift score as the minimum threshold, called the cumulative utility threshold, to prune the search space optimal set of itemsets in a nested-list structure that improves computational time, costs, and memory exhaustion. Simulations over different datasets revealed that the proposed CSLFC-HUIM model outperforms other existing methods, such as closed- and frequent closed-HUIM variants, in terms of execution time and memory consumption, making it suitable for different mined items and allied intelligence of business goals.

Deep Learning Framework with Convolutional Sequential Semantic Embedding for Mining High-Utility Itemsets and Top-N Recommendations

  • Siva S;Shilpa Chaudhari
    • Journal of information and communication convergence engineering
    • /
    • v.22 no.1
    • /
    • pp.44-55
    • /
    • 2024
  • High-utility itemset mining (HUIM) is a dominant technology that enables enterprises to make real-time decisions, including supply chain management, customer segmentation, and business analytics. However, classical support value-driven Apriori solutions are confined and unable to meet real-time enterprise demands, especially for large amounts of input data. This study introduces a groundbreaking model for top-N high utility itemset mining in real-time enterprise applications. Unlike traditional Apriori-based solutions, the proposed convolutional sequential embedding metrics-driven cosine-similarity-based multilayer perception learning model leverages global and contextual features, including semantic attributes, for enhanced top-N recommendations over sequential transactions. The MATLAB-based simulations of the model on diverse datasets, demonstrated an impressive precision (0.5632), mean absolute error (MAE) (0.7610), hit rate (HR)@K (0.5720), and normalized discounted cumulative gain (NDCG)@K (0.4268). The average MAE across different datasets and latent dimensions was 0.608. Additionally, the model achieved remarkable cumulative accuracy and precision of 97.94% and 97.04% in performance, respectively, surpassing existing state-of-the-art models. This affirms the robustness and effectiveness of the proposed model in real-time enterprise scenarios.

A New Approach to Web Data Mining Based on Cloud Computing

  • Zhu, Wenzheng;Lee, Changhoon
    • Journal of Computing Science and Engineering
    • /
    • v.8 no.4
    • /
    • pp.181-186
    • /
    • 2014
  • Web data mining aims at discovering useful knowledge from various Web resources. There is a growing trend among companies, organizations, and individuals alike of gathering information through Web data mining to utilize that information in their best interest. In science, cloud computing is a synonym for distributed computing over a network; cloud computing relies on the sharing of resources to achieve coherence and economies of scale, similar to a utility over a network, and means the ability to run a program or application on many connected computers at the same time. In this paper, we propose a new system framework based on the Hadoop platform to realize the collection of useful information of Web resources. The system framework is based on the Map/Reduce programming model of cloud computing. We propose a new data mining algorithm to be used in this system framework. Finally, we prove the feasibility of this approach by simulation experiment.

A Study on the Implementation of an optimized Algorithm for association rule mining system using Fuzzy Utility (Fuzzy Utility를 활용한 연관규칙 마이닝 시스템을 위한 알고리즘의 구현에 관한 연구)

  • Park, In-Kyu;Choi, Gyoo-Seok
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.20 no.1
    • /
    • pp.19-25
    • /
    • 2020
  • In frequent pattern mining, the uncertainty of each item is accompanied by a loss of information. AAlso, in real environment, the importance of patterns changes with time, so fuzzy logic must be applied to meet these requirements and the dynamic characteristics of the importance of patterns should be considered. In this paper, we propose a fuzzy utility mining technique for extracting frequent web page sets from web log databases through fuzzy utility-based web page set mining. Here, the downward closure characteristic of the fuzzy set is applied to remove a large space by the minimum fuzzy utility threshold (MFUT)and the user-defined percentile(UDP). Extensive performance analyses show that our algorithm is very efficient and scalable for Fuzzy Utility Mining using dynamic weights.

Comparison of Performance Measures for Credit-Card Delinquents Classification Models : Measured by Hit Ratio vs. by Utility (신용카드 연체자 분류모형의 성능평가 척도 비교 : 예측률과 유틸리티 중심으로)

  • Chung, Suk-Hoon;Suh, Yong-Moo
    • Journal of Information Technology Applications and Management
    • /
    • v.15 no.4
    • /
    • pp.21-36
    • /
    • 2008
  • As the great disturbance from abusing credit cards in Korea becomes stabilized, credit card companies need to interpret credit-card delinquents classification models from the viewpoint of profit. However, hit ratio which has been used as a measure of goodness of classification models just tells us how much correctly they classified rather than how much profits can be obtained as a result of using classification models. In this research, we tried to develop a new utility-based measure from the viewpoint of profit and then used this new measure to analyze two classification models(Neural Networks and Decision Tree models). We found that the hit ratio of neural model is higher than that of decision tree model, but the utility value of decision tree model is higher than that of neural model. This experiment shows the importance of utility based measure for credit-card delinquents classification models. We expect this new measure will contribute to increasing profits of credit card companies.

  • PDF

General Set Covering for Feature Selection in Data Mining

  • Ma, Zhengyu;Ryoo, Hong Seo
    • Management Science and Financial Engineering
    • /
    • v.18 no.2
    • /
    • pp.13-17
    • /
    • 2012
  • Set covering has widely been accepted as a staple tool for feature selection in data mining. We present a generalized version of this classical combinatorial optimization model to make it better suited for the purpose and propose a surrogate relaxation-based procedure for its meta-heuristic solution. Mathematically and also numerically with experiments on 25 set covering instances, we demonstrate the utility of the proposed model and the proposed solution method.