
J. lnf. Commun. Converg. Eng. 21(2): 117-129, Jun. 2023 Regular paper
Multi-Sized cumulative Summary Structure Driven Light
Weight in Frequent Closed Itemset Mining to Increase
High Utility

Siva S1* and Shilpa Chaudhari2

1Department of Computer Science and Applications, Reva University, Bangalore 560064, India
2Department of Computer Science and Engineering, MS Ramaiah Institute of Technology, Bangalore 560054, India

Abstract

High-utility itemset mining (HIUM) has emerged as a key data-mining paradigm for object-of-interest identification and

recommendation systems that serve as frequent itemset identification tools, product or service recommendation systems, etc. Recently,

it has gained widespread attention owing to its increasing role in business intelligence, top-N recommendation, and other enterprise

solutions. Despite the increasing significance and the inability to provide swift and more accurate predictions, most at-hand solutions,

including frequent itemset mining, HUIM, and high average- and fast high-utility itemset mining, are limited to coping with real-time

enterprise demands. Moreover, complex computations and high memory exhaustion limit their scalability as enterprise solutions. To

address these limitations, this study proposes a model to extract high-utility frequent closed itemsets based on an improved cumulative

summary list structure (CSLFC-HUIM) to reduce an optimal set of candidate items in the search space. Moreover, it employs the lift

score as the minimum threshold, called the cumulative utility threshold, to prune the search space optimal set of itemsets in a nested-list

structure that improves computational time, costs, and memory exhaustion. Simulations over different datasets revealed that the

proposed CSLFC-HUIM model outperforms other existing methods, such as closed- and frequent closed-HUIM variants, in terms of

execution time and memory consumption, making it suitable for different mined items and allied intelligence of business goals.

Index Terms: Business Intelligence, Cumulative Summary List-Structure, Frequent Closed High-Utility Itemset Mining

I. INTRODUCTION

The rapid growth in software technologies, the Internet,

decentralized computing, and low-cost hardware Fhas broad-

ened the horizon of analytics solutions for real-time decision-

making. Advanced analytics solutions have become central

entities for business intelligence and enterprise solutions,

particularly for product recommendations, market segmenta-

tion, and supply chain management. It also helps in future

demand analysis and prediction, which shapes businesses for

proactive decision-making [1-4]. Pattern mining or high-util-

ity itemset mining (HIUM) methods are commonly used in

market basket analysis, business intelligence, and recom-

mendation systems [5]. Functionally, HIUM and related pat-

tern-mining approaches involve the identification of vital

features, cues, or data objects, thus enabling target segmenta-

tion and prediction [6]. In the real world, the patterns can be

periodic patterns, sequential patterns, and frequent itemsets.

However, most business intelligence solutions employ fre-

quent itemset patterns that enable the segmentation of the

top demanding products, probable demands and items, inter-

item associations, and so on for further prediction and deci-

sion-making. Frequent itemset mining methods have been

extensively applied for frequently occurring item segmenta-

117

Received 01 October 2022, Revised 21 February 2023, Accepted 01 March 2023
*Corresponding Author Siva S (E-mail: sivaraju.reva@gmail.com)
Department of Computer Science and Applications, Reva University, Bangalore 560064, India

https://doi.org/10.56977/jicce.2023.21.2.117 print ISSN: 2234-8255 online ISSN: 2234-8883

This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by-
nc/3.0/) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.

Copyright ⓒ The Korea Institute of Information and Communication Engineering

https://orcid.org/0000-0001-8659-4214
https://orcid.org/0000-0001-9625-7772

J. lnf. Commun. Converg. Eng. 21(2): 117-129, Jun. 2023
tion over a large transaction dataset [6-8], thus, identifying

frequent items with frequencies greater than a defined thresh-

old (e.g., support-value) where prediction decisions are based

[9]. Among the major pattern-mining approaches, methods

such as Apriori [6-7] were developed for frequent itemset

identification by performing (iterative) level-wise searching.

These approaches apply the downward bottom closure

(DBC) function, also known as the Apriori property, to prune

the insignificant itemsets; therefore, it identifies only those

items with high frequency to be labeled as high-frequency

items. However, the iterative search method and large com-

putation force them to undergo delays and memory exhaus-

tion, making them unsuitable for real-time enterprise

solutions. However, in later efforts, the authors proposed dif-

ferent improved solutions, including ECLAT [2], FP-Growth

[3-10], and HMine [11], where the focus was on improving

the data structure and pruning mechanism to achieve a

higher accuracy and lower computation time. However, in

these methods, factors such as transaction and its volume,

copurchased items and their frequency, and items with high-

profit value can affect value-oriented pattern mining and,

hence, can confine their efficacy [12]. To address these lim-

itations, high-utility itemset mining (HIUM) [13-14] meth-

ods have been developed, which use both volume and its

unit profit to improve accuracy, scalability, and time effi-

cacy. The HIUM method applies a utility factor that signifies

the total profit of an itemset to identify a set of high-utility

items. Numerous state-of-the-art HIUM algorithms [12-15]

generate a large volume of candidate itemsets and impose

computational costs and delays. However, pruning insignifi-

cant itemsets (i.e., items with a low frequency) can reduce

the search space and improve performance [20-24]. Unlike

the aforementioned DBC-based pruning methods, recent

authors [20-21] have found that transaction-weighted utility

(TWU) can improve the search space without added compu-

tation. In this function, TWU measures the value of the

threshold of an upper (utmost) itemset to perform pruning.

Numerous efforts have been made towards two-phase imple-

mentation [16-19] and single-phase models [20-21] for

HIUM, where the first step identifies highly correlated item-

sets, followed by a suitability analysis as the HUI in the sec-

ond step. Unfortunately, owing to its iterative data-scanning

nature, Apriori suffers from deficiency, thereby imposing a

cost of computation [20]. To improve this, one-phase meth-

ods were developed [20] using a list structure, often called a

utility list, to identify high-utility items. However, the utility

value being proportional to the length of the itemset increases

the computational costs for large data. Subsequently, the

average-utility method was applied to minimize the influ-

ence of item length on high-utility itemset estimation [22-

24]. Unlike support value-based mining, using a probability

factor can improve HUIM performance [25]. Thus, the list of

high-utility items can be improved, and items that are more

profitable and in demand can be proposed.

This study proposes a reliable, lightweight frequent closed

high-utility itemset mining model driven by cumulative sum-

mary list structures (CSLFC-HUIM). The proposed model

aims to determine an improved utility list structure with the

most significant and frequent itemsets throughout the search

space. It uses a stringent threshold measure to limit the num-

ber of candidate itemsets in the search space, thereby reduc-

ing computing time and memory fatigue. Unlike classical

HUIM methods, in which the authors use the minimum sup-

port threshold to filter insignificant items, the proposed

CSLFC-HUIM model employs the lift value as a support

threshold to perform pruning in a nested-list structure. This

value is derived from the support value, conviction, and con-

fidence, signifying the likelihood of an item frequently

occuring over transactions. The structure of the nested list

was improved using the abovementioned lifting measure as a

support threshold, called cumulative support, and the corre-

sponding cumulative utility. (e.g., cumulative summary list

structure or simply, CULS) to retain only the highly signifi-

cant items. This helped reduce computational time and mem-

ory exhaustion. Simulation results over different benchmark

datasets under various threshold conditions revealed that the

proposed CSLFC-HUIM model outperformed other methods,

including closed-HUIM and frequent closed-HUIM variants.

CSLFC-HUIM was found to be more efficient in terms of

execution time and memory consumption and is a potential

solution for many types of pattern mining or business intelli-

gence tasks.

II. SYSTEM MODEL AND METHODS

Frequent itemset-mining methods include ECLAT [2], FP-

Growth [3], Apriori [4], and HMine [11]. However, these

methods fail to guarantee time efficiency and accuracy. The

authors [6] applied a level-wise search method to design

Apriori for frequent itemset estimation. The involved pro-

cesses, such as iterative database scanning, are time-consum-

ing and exhaustive. In [3], FP-growth was proposed to

inculcate tree structure-based itemset identification. First, it

generates an FP-tree structure by traversing the search (data)

space and identifying frequent itemsets. However, exceed-

ingly high reliance on the search space size and iterative

scanning confine for real-time enterprise solutions. The

authors in [11] designed an HMine model similar to FP-

Growth but with a pointer-based hyperlink to represent

items. By contrast, ECLAT [2] was designed as an improved

model constituting a vertical layout of the database called

“Transaction ID list” to alleviate iterative database scans. In

this previous study, the authors applied the support count

information for each itemset for comparison with the Trans-

action ID list to find the frequent itemset(s). Unfortunately,
https://doi.org/10.56977/jicce.2023.21.2.117 118

Multi-Sized cumulative Summary Structure Driven Light Weight in Frequent Closed Itemset Mining to Increase High Utility
merely applying a support count cannot yield an optimal

solution because of the increased search space over a large

input dataset. Similar limitations have been observed in

other frequent itemset mining methods [6-26-29] that failed

to guarantee optimality, particularly in terms of accuracy

with minimum time and memory utilization. HIUM methods

[13-14] were later designed to identify significant patterns

by exploiting both itemset volume and its profit information.

HIUM methods were designed as two-phase [16] and one-

phase methods. In the two-phase method, the first phase gen-

erates a set of significant itemsets possessing a higher fre-

quency, whereas the later phase estimates the candidate’s

utility to identify high-utility itemsets. To avoid dependence

on the utility value, a transaction-weighted utility (TWU)

function was designed [16]. The authors [17] designed a

TWU with a flexible upper threshold and high-utility itemset

skipping ability to improve performance. They used a two-

phase model with a pruning algorithm called the isolated

itemset discarding strategy (IIDS) to perform swift data

scanning and pruning towards HIUM. Subsequently, various

tree-based models, such as IHUP [18], HUP-tree [30], UP-

Growth [19], UP-Growth+ [31], MU-Growth [32], and PB

[33], were developed. These methods apply FP-Growth [3]

to reduce the scanning cost using a tree structure. Unlike

two-phase methods, the single-phase method [20] focuses on

identifying candidate itemsets with high utility values. HUI-

Miner [20] was designed as a one-phase model with a list

structure called a utility list (UL) to store the information of

high-frequency itemsets. With the improved search space,

the pruning efficacy became better. To improve HUI-Miner,

the authors [21] reduced the number of joint operations

between the utility value and frequency using a pruning

method named estimated-utility cooccurrence pruning (EUCP),

which mainly relies on a matrix structure called estimated-

utility cooccurrence structure (EUCS). EUCP stores the

TWU values of two item sets in the EUCS matrix, which are

used to prune insignificant items without estimating their

utility value. To improve [21], the U-pruning, PU-pruning,

and LA-pruning methods were developed [34]. The authors

[35] designed the EFIM by applying upper bounds named

subtree utility and local utility. To minimize the scanning

cost, a transaction merging model was designed in [35]. In

[36], HMiner was improved by using utility information

storage. Methods such as BAHUI [37], the HUIM-BPSO

sign [38], MinHUIs [39], and FHM+ [40] were designed for

HIUM; however, they were found to be susceptible to large

real-time continuous data. Unlike HIUM methods, high aver-

age-utility itemset mining methods use average-utility values

to reduce reliance on length constraints. As an evolution

from TPAU [22], a two-phase mining model applied the

upper bound as average utility upper bound (AUUB) criteria.

If the AUUB value of an itemset did not meet the aforemen-

tioned criteria, it was discarded as a high-utility item,

thereby reducing the search space. However, as a level-wise

search method, TPAU [22] can experience higher delays and

costs. To improve time efficiency, PBAU [23] was designed

as a projection-based method with an indexing structure.

With PBAU, an upper-limit-driven prefix is applied to reduce

the search space. A tree-based high-average-utility itemset

mining method was designed in [41], in which the itemset

structure was applied to improve performance. The authors

[42] designed HAUI-Growth with a tree structure to mini-

mize unwanted iterative scans. A single-phase HAUI was

proposed in [43] using an average utility-based list structure.

AUUB is used to prune weak candidates from the search

space. The authors [44] designed a HAUI miner called

EHAUPM by merging two strictly defined upper thresholds

called looser upper-bound utility (LUB) and revised tighter

upper bound (RTUB). Despite its ability to reduce the search

space, it failed to address the association between different

items and the probability of becoming a HUI. In [45], MHAI

was designed using the HAI list structure to identify suitable

high-utility itemsets. A closed HUI (CHUI) was proposed in

[51] to reduce the number of candidate itemsets. To improve

the time efficiency, CHUI-Miner [52] was designed as a sin-

gle-phase solution using the EU-List structure. CHIU-Miner,

also known as EFIM-Closed [53], was proposed with two

upper thresholds with a forward-backward check facility. It

applies local utility and subtree utility thresholds to prune

the search space to improve performance [54]. Unfortu-

nately, none of these methods [46-50] can assess the proba-

bility of coexisting items for profit.

A. Problem Formulation

A. An itemset X with threshold MinSup can be a frequent

itemset if CumSup > MinSup, where the cumulative

support is an upper threshold signifying the corre-

sponding support value, conviction, confidence, and

lift scores. For a high-utility itemset, let I = {i1, i2, ...,

im} represent the items (e.g., a transaction). The trans-

action list D = {T1, T2, ..., Tn} is the set of transactions.

For each transaction TtID  D, let tID be a distinct

transaction identifier. Let each item i  I be connected

to two nonnegative numbers and p(i) and q(i; TtID) be

the external and internal utilities of a transaction,

respectively. Here, the internal utility signifies the vol-

ume of each item, whereas the external utility rep-

resents the profit for item i. The cumulative utility

value of an item is derived using (1).

(1)

B. In sync with (1) and the allied HUIM problem, several

definitions are derived. These are expressed as follows:

C. Definition I (Utility Value of an Itemset in a Transac-

tion)
119 http://jicce.org

J. lnf. Commun. Converg. Eng. 21(2): 117-129, Jun. 2023
D. For a transaction set D encompasses X itemsets, the

utility value of X throughout TtID is estimated accord-

ing to (2).

(2)

E. Definition 2 (Cumulative Utility of an Itemset in Data-

base D)

F. For X itemset in D, the cumulative utility value is given

by (3).

(3)

G. Definition 3 (Utility Values of a Distinct Transaction

and a Complete Database D)

H. The utility of a transaction refers to the cumulative

utilities of all items, as shown in (4).

(4)

I. Definition 4 (Relative Utility of an Itemset)

J. For database D, the relative utility of an itemset is

given by (5).

(5)

K. Definition 5 (High-Utility Itemset Mining)

L. In the context of HUIM,X can be an HIU only when

uD(X) ≥ MinUtil, where MinUtil refers to the minimum

utility threshold.

M. Definition 6 (Closed High-Utility Itemset)

N. An itemset X can be a closed HUI only when there

exists no superset Z, with X  Z and Sup(X) = Sup(Z).

X and Z can be HUIs provided that uD(X) ≥ MinUtil

and uD(Z) ≥ minUtil [26-27]. Sup(X) and Sup(Z) values

are the probabilities indicating that the likelihood of X

to become an HUI is the same as that of Z.

O. Definition 7 (Frequent Closed High-Utility Itemset)

P. If the support value of itemset X satisfies Sup(X) ≥

MinSup while maintaining a value near the utility

value uD(X) ≥ MinUtil, it is called a CHUI. Unlike

classical standalone MinSup-sensitive pruning meth-

ods, the use of MinUtil as the second criterion opti-

mizes the search space and HUIM performance.

Q. Definition 8 (Probabilistic Frequent Closed High-Util-

ity Itemset)

This work extends the above definitions and derives a fac-

tor called a probabilistic frequent closed high-utility itemset

to improve overall efficiency. If the cumulative support

value of an itemset X in terms of support value, conviction,

confidence, and lift values meets the criteria CumSup(X) >

MinSup while retaining a value close to the utility value

uD(X) ≥ MinUtil, it is called a probabilistic CHUI itemset (P-

CHUI). In P-CHUI, CumSup(X) > MinSup can optimally fil-

ter the search space to achieve a better performance. In sync

with Definition 8, the proposed work applies different proba-

bilistic criteria, such as the support value, confidence, con-

viction, and lift to estimate CumSup(X), which is later used

for pruning the search space. Referring to the above defini-

tions, for D as a transaction database, MinCumSup and

MinUtil are the cumulative support threshold and minimum

utility, respectively. Subsequently, it identifies the probabilis-

tic frequent closed high-utility itemset (PFCHUI) in D while

fulfilling the criteria of MinCumSup and MinUtil. To ensure

the antimonotonic value of the utility, the cumulative TWU

(CTWU) was applied as the upper threshold, which is

derived using (6).

Definition 9 Cumulative Transaction-Weighted Utilization

CTWU of an itemset X (CTWU(X)) can be defined as (6).

(6)

For the illustrations in Table 1, CTWU of item b can be

derived using (7).

(7)

In (7), u refers to the cumulative utilization. The transac-

tion utilities and CTWU for each item are listed in Table 1.

To apply PFCHUI, CULS is applied, which is followed by

the storage of the residual utility values of the items in

CULS for filtering. Here, CULS stores item information in

the form of (tID; iutil; rutil) for each tuple. In CULS,tID is

the transaction identifier, iutil is the utility value, and rutil is

the residual utility value of an itemset in D. CULS is formed

by performing the intersection of the utility lists and corre-

sponding probabilistic subsets without scanning the original

database. CumUtil of an itemset is measured by adding all

utility values (i.e., iutil) of the itemset in each transaction. If

iutil and rutil values of an itemset are lower than the MinUtil

value, the itemset is labeled as insignificant. Four probabilis-

tic measures, including support value, conviction, confidence,

and lift, were used as the probabilistic utility measures,

where the criteria CumUtility > MinUtil helped refine the

search space to improve performance in comparison to the

classical TWU-based methods. The addition of iutil and rutil

can improve pruning compared with state-of-the-art TWU

methods but at the cost of additional calculations (e.g., con-

Table 1. Transaction utility and CTWU estimation

TtID T1 T2 T3 T4 T5 T6

u(TtID) 38 39 11 25 30 37

Item name a b c d e F

CTWU 143 144 77 118 141 123
https://doi.org/10.56977/jicce.2023.21.2.117 120

Multi-Sized cumulative Summary Structure Driven Light Weight in Frequent Closed Itemset Mining to Increase High Utility
viction, confidence, lift, and cumulative support estimation).

To address this, TWU applies a utility list to prune the data

space and therefore appends the remaining utility values of

an itemset. This study applies CumUtility to further reduce

insignificant itemsets in D. It estimates CumUtility as per

Definition 10.

Definition 10 Cumulative Utility

The CumUtility of item X in transaction TtID is given by

(8), which is estimated using (9).

(8)

(9)

Let X be the itemset; then the supersets can be identified

as HUI, conditioned at CumUtility(X) > MinUtil. Otherwise,

all superset items are categorized as low-utility items and,

hence, are dropped. The proposed model exploits the remain-

ing utility of the itemsets to prune low-utility items. It esti-

mates the addition of iutil values in the utility list (for X

itemset) and uD(X). If uD(X) > MinUtil, then X is defined as

an HUI. Subsequently, it applies the sum of uD(X) and ΣtI-

Dru(X, TtID) to assess whether the probabilistically associ-

ated itemsets are of high utility.

1) System Model

The overall proposed model is depicted in Fig. 1.

a) Cumulative Utility Summary List (CULS):

Most existing HIUM models use a utility list structure to

prune and define HUIs. The utility list of a set of entries in a

transactional database can be measured by traversing the

utility lists of its subsets without parsing the original data-

base. In contrast, most existing methods perform repetitive

intersection functions and contain noncritical elements in the

memory. This exhausts the memory and time required by

classical methods. Therefore, unlike this approach, classical

utility-list models are not optimal for truncating infrequent

and insignificant item sets in large transactional databases.

Classical methods do not store the associations between

itemsets or the probabilistic relationships between items. To

address this problem, CULS is applied, which depends on a

structure called a utility-list buffer [25]. CULS applies a util-

ity list buffer structure (ULB), followed by its definition. In

this study, ULB is designed as a memory-pipeline structure

to store the information pertaining to each itemset in the

form of (tID; iutil; rutil). In this list structure, tID, iutil, and

rutil state the transaction ID, the internal utility value, and

the remaining utility value, respectively, for an itemset in a

transaction. The utility list for each item is stored in different

ULB data segments. With the aforementioned ULB list

structure, the proposed model applies CULS to swiftly

access the itemset information. Here, CULS acts as an index

segment to locate and access itemset information. In D, the

index segment CULS of an itemset X (e.g., CULS(X)) can be

defined as a tuple possessing a structure (10).

(10)

In (10), StartLoc and EndLoc refers to the start and end

indices, respectively, of an index segment in the ULB struc-

ture. SumIUtil is the sum of the internal utility values iUtil,

and the sum of the remaining utility values (in the utility

profile of itemset X) is given as SumRUtil. The parameter

Sup(X) is the support value of an itemset X. With a prespeci-

fied itemset X and the corresponding CULS structure, the

allied support threshold is estimated using (11). This

approach can help swiftly estimate the support values of

each itemset without requiring repeated database scanning.

Consequently, this can make the model more time and mem-

ory efficient.

(11)

b) CULS Precheck Model:

The use of CunUtil can improve pruning; however, there

can be several itemset candidates for further mining, which

can impact performance. In CHUIM models [57-59], two

distinct itemsets are assessed to determine whether they pos-

sess any subsumption association by performing a compari-

son among transaction tID sets. It is vital to estimate the

close high-utility itemsets; however, executing the overall

process can be time-consuming and complex. This can

become more complex if it requires estimating the relation-

ship between itemsets and previously mined close HUIs. To

address these issues and reduce insignificant itemsets, this

study improved the subsume check using a precheck. Let the

itemsets be X and Z. The latter can be defined as an itemset

X only when X  Z and Sup(X) = Sup(Z) . When defining a

high-utility itemset, the aggregate relationship between theFig. 1. Proposed model.
121 http://jicce.org

J. lnf. Commun. Converg. Eng. 21(2): 117-129, Jun. 2023
itemsets occurs in decreasing order of length. Item set ab is

generated after item a, whereas itemset abc is generated as a

subsequent itemset ab. Therefore, it is possible to examine

whether an itemset possesses a possible subset during its

generation. Therefore, only important itemsets are retained,

with the infrequent items deleted. Only meaningful item sets

are retained for HUI extraction.

c) Cumulative Summary List Structure (CSLS):

This work emphasizes performing frequent closed HUIM,

signifying that not only is the itemset’s cumulative utility

supposed to be higher than MinUtil but also that its allied

CumSup is supposed to be higher than the MinSup value. To

achieve this, the itemset candidates obtained in the previous

section are split into multiple data blocks with respect to

their corresponding support values. Because the itemsets in a

block possess equal support values, our proposed CSLFC-

HUIM model requires estimating frequent CHUI itemsets in

each data block by applying the abovementioned subsump-

tion relationship. CSLFC-HUIM applied subsumption rela-

tionship information among itemsets in each block to identify

probabilistic frequent CHUIs. The proposed model applied a

nested list structure to store the itemset candidates. A tar-

geted CSLS structure was designed using the modality

described in (12), where CumSupport stores the cumulative

support values of each itemset, and List〈List〈Itemsetle-

ngth〉〉�stores the itemset candidates pertaining to each Cum-

Support value. The itemsets pertaining to each CumSupport

are stored in ascending order of length.

(12)

d) Implementation:

To implement the model, function (12) (i.e., Map2Each-

Support) estimates the set of itemsets from the CSLFC-

HUIM candidate list, along with their corresponding length

and cumulative support values. These values are appended to

a new list structure to construct a targeted nested list struc-

ture, as defined in (12) (i.e., the Map2EachSupport structure).

Storing these itemsets and their support (i.e., CumSupport) or

length values, CSLFC-HUIM splits the significant itemsets

according to their corresponding CumSupport values.

Pseudocodes are given in Algorithms I-III.

Algorithm-1 Pseudocode for CSLFC-HUIM mining

Pseudocode-1 CSLFC-HUIM Mining Model

Input: Transaction database D, MinSup, and MinUtil

Output: Targeted probabilistic frequent CHUI

Algorithms:

1. Initiate the scanning of the input transaction database

D, and estimate the CTWU for first itemset.

2. Consider X* as the set of each itemset with CTWU

≥ MinUtil and CumSup ≥ MinSup.

3. Sort items in descending order (in X*) per CTWU.

4. Restart scanning database D to utility profiling and

CULS for each item for x  X*.

5. Form the proposed linked list structure.

6. Execute Search-CSLFC-HUIM (ϕ, CSLS of items 

X*, MinUtil, MinSup).

Algorithm-1 Pseudocode for probabilistic high-frequent

and high-utility itemsets

Pseudocode-2 Targeted High-Frequent and High-Utility

Itemsets

Input: x: An itemset in utility profile list; Z probabilistic Z

items pertaining to the x itemset; MinCumUtil and MinCum-

Sup

Output: Targeted probabilistic frequent CHUI

1. Initiate a loop.
https://doi.org/10.56977/jicce.2023.21.2.117 122

Multi-Sized cumulative Summary Structure Driven Light Weight in Frequent Closed Itemset Mining to Increase High Utility
Algorithm-3 Pseudocode for generating targeted high-util-

ity itemsets

Pseudocode-3 Generate_ItemCSLFC-HUIM

Input: CSLFC-HUIMCandidateForEachSupport

Output: Targeted probabilistic frequent CHUI

III. RESULTS

Multiple benchmark datasets were used to assess the effi-

cacy of the proposed CSLFC-HUIM model. In addition, a

comparison was made with different state-of-the-art HIUM

methods, where the relative performance was characterized

in terms of time and memory consumption. Six datasets were

obtained from the SPMF Open-Source Data Mining Library

[55] (Table 2). Table 2 presents the data specifications,

including the total number of transactions, total items, the

average length of transactions, and the type of data (sparse

or dense). Dense data encompass several items per transac-

tion, whereas sparse data contain relatively fewer items per

transaction. The utility per transaction varies according to

the number of items per transaction and its corresponding

occurrence throughout the dataset. Accordingly, we exam-

ined the performance using different datasets, including both

sparse and dense (data) structures. To assess efficacy, the

performance was tested over different threshold values,

including MinCumSup and MinCumUtil, for the different

datasets.

A. Runtime Analysis: Cumulative Utility vs. Runtime

Four state-of-the-art algorithms were considered: closed

high-utility itemset mining (CHUI-Miner [56]), CLS-Miner

[57], fast high average-utility itemset miner (FHUIM) [58],

and frequent and closed HUIM (FCHUIM) [59]. The CHUI-

miner (CHUIM) and FCHUIM models were developed based

on the closed HUIM [56] principle, where they focus mainly

on improving the utility-list structure. The CSLFC-HUIM

model can be considered an extension of these methods.

However, unlike in [56-57-59], CSLFC-HUIM uses multiple

support values to perform pruning. It applies statistics (prob-

abilistic statistical values), including conviction, confidence,

and lift, to design cumulative support values to refine prun-

ing. Because lift is derived as an eventual feature by apply-

ing support value, confidence, and conviction, we considered

this value at the place of the support value. CSLFC-HUIM

uses the lift score as the support value to perform CULS and

derive a nested utility list structure. It significantly reduces

the candidate itemsets in the list structure, which decisively

improves the computation. Fig. 2 shows the execution time

analysis over different input datasets for different utility

threshold values. The results indicate that the CSLFC-HUIM

consumes less time.

This ability of CSLFC-HUIM improved the search space

and computation. Moreover, the nested loop architecture fur-

ther improved the computational efficacy and time consump-

tion. In contrast, classical approaches, such as FCHUIM and

CLSM, which are TWU pruning models, require more time.

We varied the utility score for the different test datasets (i.e.,

Chess, Chainstore, Retail, Accident, Kosarak, and Connect)

to assess the relative performance. The results confirm that

the proposed CSLFC-HUIM model outperforms other state-

of-the-art methods. For the chess data, where the utility

threshold was varied from 350000 to 550000, CSLFC-HUIM

performed better than other state-of-the-art models, such as

CHUIM, CLSM, and FHAIM; however, the performance of

FCHUIM was found to be close to that of the proposed

CSLFC-HUIM model. This is because, similar to the pro-

posed CSLFC-HUIM model, FCHUIM applies a support

threshold-driven nested-list structure for pruning, which

improves time efficiency. The simulation confirms that the

CSLFC-HUIM model outperforms other state-of-the-art

methods, whereas FCHUIM, CLSM, FHAIM, and CHUIM

perform in decreasing order. CHUIM is a two-phase method

Table 2. Data specifications [55]

Dataset
Transac-

tions
Items

Average

length of

transaction

Size

(MB)

Type of

the Data

Chess 3196 75 37 656.6 KB Dense

Accident 340,183 468 33.8 66.2 Dense

Retail 88,162 16,470 10.3 6.7 Sparse

Chainstore 1,112,949 46,086 7.3 39.1 Sparse

Kosarak 990,002 41,270 8.1 21.6 Sparse

Connect 67,557 129 43 16.9 Dense
123 http://jicce.org

J. lnf. Commun. Converg. Eng. 21(2): 117-129, Jun. 2023

https://doi.org/10.56977/jicce.2023.21.2.117 124

Fig. 2. Execution time analysis over different utility threshold values for different input datasets.

Multi-Sized cumulative Summary Structure Driven Light Weight in Frequent Closed Itemset Mining to Increase High Utility
that consumes more time than other methods. In contrast,

FHAIM focuses on applying a strict upper bound in terms of

the support threshold, which also reduces time efficiency.

This is because it cannot avoid the presence of itemsets that

have support values lower than the defined threshold. The

presence of residual itemsets reduces the performance (Fig.

2). In CSLFC-HUIM, increasing the utility threshold decreases

time consumption owing to reduced residual itemsets in the

search space and, hence, enhances performance.

B. Run-Time Analysis: Support Threshold vs. Run-
time

Because increasing the support threshold helps a model

reduce the itemsets in the list structure (in this case, the

CULS nested list structure), thereby decreasing the computa-

tional time, we varied the support threshold for different

inputs in percentiles. For instance, in the chess data, we var-

ied the support threshold from 10 to 50% of the target item-

sets. The simulation results (Table 3) revealed that the proposed

CSLFC-HUIM model performs better than other state-of-the-

art methods. The reduction in the residual itemsets in the

CULS nested list structure helped reduce the execution time.

The results reveal CSLFC-HUIM performs almost four times

faster than the classical CHUIM methods. Compared to

CLS-Miner, CSLFC-HUIM performs computations almost

three times faster. The chainstore dataset carried a total of

1,112,949 transactions with a significantly large number of

items (i.e., 46,086), and the different algorithms were simu-

lated with 0.20, 0.40, 0.60, 0.80, and 1% of the item sets.

The proposed CSLFC-HUIM model requires an average of

18.2 seconds to process these data for different target itemset

batches. In contrast, FCHUIM, CLSM, FHAIM, and CHUIM

take 35.5 seconds, 76.2 seconds, 104.7 seconds, and 88 sec-

onds, respectively. For the Chess dataset, the average time

consumptions for CHUIM, CLSM, FHAIM, and FCHUIM

were 1582.6 seconds, 1255 seconds, 703.2 seconds, and

157.8 seconds, respectively. Compared to these algorithms,

CSLFC-HUIM took merely 74.6 seconds, signifying superior

performance in HIUM tasks. Similar outputs were found for

the Kosarak data, where the existing methods showed higher

time consumption (CHUIM (93.18s), CLSM (15.86s), FHAIM

(73.4s), and FCHUIM (11.0s)). Compared to these state-of-

the-art methods, CSLFC-HUIM took 8.8 seconds, signifying

superior time efficacy and exhaustion towards HUIM.

IV. DISCUSSION AND CONCLUSIONS

The average memory utilization by CHUIM, CLSM,

FHAIM, and FCHUIM algorithms was 216.4 MB, 208 MB,

204 MB, and 159.8 MB, respectively. In contrast, the pro-

posed CSLFC-HUIM model consumes merely 35 MB of

memory (Fig. 3), confirming its robustness in terms of mem-

ory utilization. Interestingly, CSLFC-HUIM performs almost

four times lower in terms of memory exhaustion than the

recently proposed FCHUIM algorithm and almost 6 times

lower than CHUIM, CLS-Miner, and FHAIM algorithms.

For the Chainstore data, the memory utilization measurement

shows that the state-of-the-art CHUIM, CLSM, FHAIM, and

FCHUIM consume 793 MB, 744 MB, 673 MB, and 696 MB

of resources, respectively. In contrast, CSLFC-HUIM con-

sumes only 132 MB of average memory over the different

utility thresholds. A similar pattern can be found in the retail

dataset, where CSLFC-HUIM exhibits almost five times

lower memory (154 MB) than the state-of-the-art methods

(CHUIM (732 MB), CLSM (686 MB), FHAIM (671 MB),

and FCHUIM (576 MB)). For the Accident dataset, the

Table 3. Relative runtime analysis with varying minimum cumulative
support value (support threshold) for the different datasets

D
a
ta MinCum-

Sup
CHUIM CLSM FHAIUM FCHUI

CSLFC-

HUIM

C
h
e
s
s

10% 1825 1461 986 217 111.3

20% 1779 1402 781 206 87

30% 1620 1247 703 131 69

40% 1458 1195 621 123 59.6

50% 1231 972 425 112 46.2

C
h
a
in
s
to
r
e

0.20% 107.4 103.6 129.4 45 26.1

0.40% 95.3 93.02 117.3 41.8 21.8

0.60% 89.1 79.3 104.2 36.3 17.02

0.80% 79.4 63.1 93.8 32.5 14.91

1% 68.8 42.1 79.2 21.9 11.26

R
e
ta
il

0.20% 24.31 21.27 14.83 7.9 6.7

0.40% 16.96 13.8 11.12 7.2 6.4

0.60% 12.09 10.96 9.36 4.8 4.6

0.80% 7.82 9.91 6.63 4.21 4.02

1% 4.21 3.27 5.71 3.2 2.81
A
c
c
id
e
n
t

10% 142 127 124.5 92 77.76

20% 134.4 116.4 118.81 88.3 68.2

30% 127.4 86.8 99.32 79.2 49.91

40% 91.8 69.2 87.6 52.2 29.2

50% 77.7 56.6 79.1 29 21.6

K
o
s
a
r
a
k

2% 129.91 38 102.8 32 26.62

4% 107.2 18 90.3 6 4.9

6% 95.7 12 84.2 5.8 4.47

8% 83.2 6.2 47.6 5.6 4.2

10% 49.9 5.1 42.3 5.63 3.98

C
o
n
n
e
c
t

2% 264 248 233 197 124.4

4% 240 237 231 184 101.3

6% 197 187 219 162 97.76

8% 193 181.3 179.3 127.3 95.21

10% 176 159 161 87.3 83.22
125 http://jicce.org

J. lnf. Commun. Converg. Eng. 21(2): 117-129, Jun. 2023

https://doi.org/10.56977/jicce.2023.21.2.117 126

Fig. 3. Relative runtime analysis with varying minimum utility values for different datasets.

Multi-Sized cumulative Summary Structure Driven Light Weight in Frequent Closed Itemset Mining to Increase High Utility
memory consumption of CHUIM (1486 MB), CLSM (836

MB), FHAIM (1008 MB), and FCHUIM (816 MB) was

higher than that of the proposed CSLFC-HUIM model (779

MB). For the Kosarak dataset, the average memory utiliza-

tion of CHUIM, CLSM, FHAIM, and FCHUIM were 626

MB, 578 MB, 620 MB, and 384 MB, respectively, whereas

CSLFC-HUIM consumed only 331.6 MB, signifying better

resource efficiency. Similarly, for the Connect dataset, CHUIM

(622 MB), CLSM (486 MB), FHAIM (566 MB), and

FCHUIM (350 MB) were found to be resource-exhaustive

than the proposed CSLFC-HUIM model (288 MB). The

overall results confirm that the proposed CSLFC-HUIM can

yield both time and memory efficiency to satisfy major

HUIM purposes and enterprise demands.

This study proposed a lightweight high-utility closed-ele-

ment set discovery model (CSLFC-HUIM) for HUIM model

mining tasks. The proposed model focuses on improving the

utility list structure with frequent and important item sets in

the search space to improve overall computational efficiency.

Unlike classical HUIM methods, the proposed model applies

a lift measure or a value derived as a cumulative score to

perform pruning. The use of the lift measure as a support

threshold, called cumulative support, and corresponding

cumulative utility values helps improve the nested list named

cumulative utility list structure (CULS) to refine the search

space and the optimal residual itemsets to reduce computa-

tional time and memory exhaustion. The use of the cumula-

tive score as a support value as the threshold realized both

closed-HUIM and frequent closed-HUIM. The implementa-

tion of the cumulative summary list structure with a pre-

check-assisted nested-list structure helped the CSLFC-HUIM

model exhibit better computational time and memory utiliza-

tion. Interestingly, the average runtime required (i.e., time-

consumption) by the different HUIM methods showed that

the proposed method consumed only 42.71 seconds, whereas

the other methods like CHUIM, CLSM, FHAIM, and

FCHUI consumed 350.92 seconds, 275.5 seconds, 199.57

seconds, and 71.57 seconds, respectively. This confirms that

the proposed CSLFC-HUIM model has exceedingly better

performance than other state-of-the-art methods, and the role

of improved multiple conditions or thresholds in the form of

a lift score helped reduce the search space, while CULS

enabled swift computation to perform HUIM. Simulations on

different benchmark datasets show that the CSLFC-HUIM is

nearly five times more responsive while ensuring signifi-

cantly lower memory consumption. The relative performance

with other state-of-the-art methods, such as CHUIM,

FHAIM, CLSM, and FCHUIM, confirms that CSLFC-HUIM

exhibits superior performance, where the role of the probabi-

listic derived lift score as a threshold cannot be ignored. As

a matter of fact, CSLFC-HUIM is superior towards HUIM

tasks; however, it could not address the need for top-N most

frequent itemset identification. Future research will focus on

identifying the top-N items to assist enterprises in making

proactive supply chains and marketing decisions in the busi-

ness horizon.

REFERENCES

[1] P. Fournier-Viger, J. C. W. Lin, R. U. Kiran, Y. S. Koh, and R.

Thomas, “A survey of sequential pattern mining,” Data Science and

Pattern Recognition, vol. 1, no. 1, pp. 54-77, 2017.

[2] M. J. Zaki, “Scalable algorithms for association mining,” IEEE

Transactions on Knowledge and Data Engineering, vol. 12, no. 3,

pp. 372-390, 2000. DOI: 10.1109/69.846291.

[3] J. Han, J. Pei, and M. Kamber, “Data mining: concepts and

techniques,” Elsevier, Amsterdam, 2011.

[4] R. Agrawal and R. Srikant, “Mining sequential patterns,” in

Proceedings of the Eleventh International Conference on Data

Engineering, Taipei, Taiwan, pp. 3-14, 1995. DOI: 10.1109/ICDE.

1995.380415.

[5] K. K. Sethi and D. Ramesh, “A fast high average-utility itemset

mining with efficient tighter upper bounds and novel list structure,”

The Journal of Supercomputing, vol. 76, no. 12, pp. 10288–10318,

Mar. 2020. DOI: 10.1007/s11227-020-03247-5.

[6] R. Agrawal, T. Imieliński, and A. Swami, “Mining association rules

between sets of items in large databases,” in ACM Sigmod Record,

vol. 22, no. 2, pp. 207-216, Jun. 1993. DOI: 10.1145/170035.170072.

[7] R. Agrawal and R. Srikant, “Fast algorithms for mining association

rules,” in Proceedings of the 20th International Conference on Very

Large Data Bases, vol. 1215, pp. 487-499, 1994.

[8] P. Fournier-Viger, L. C. W. Lin, B. Vo, T. T. Chi, J. Zhang, and H.

B. Le, “A survey of itemset mining,” Wiley Interdisciplinary

Reviews: Data Mining and Knowledge Discovery, vol. 7, no. 4, Jul.

2017. DOI: 10.1002/widm.1207.

[9] T. Wei, B. Wang, Y. Zhang, K. Hu, Y. Yao, and H. Liu, “FCHUIM:

Efficient Frequent and Closed High-Utility Itemsets Mining,” IEEE

Access, vol. 8, pp. 109928-109939, 2020. DOI: 10.1109/ACCESS.

2020.3001975.

[10] G. Grahne and J. Zhu, “Fast algorithms for frequent itemset mining

using fp-trees,” IEEE Transactions on Knowledge and Data

Engineering, vol. 17, no. 10, pp. 1347-1362, Oct. 2005. DOI:

10.1109/TKDE.2005.166.

[11] J. Pei, J. Han, H. Lu, S. Nishio, S. Tang, and D. Yang, “H-mine:

hyper-structure mining of frequent patterns in large databases,” in

Proceedings of the 2001 IEEE International Conference on Data

Mining, San Jose, USA, pp 441-448, 2001. DOI: 10.1109/ICDM.

2001.989550.

[12] V. S. Tseng, B. E. Shie, C. W. Wu, and P. S. Yu, “Efficient

algorithms for mining high utility itemsets from transactional

databases,” IEEE Transactions on Knowledge and Data Engineering,

vol. 25, no. 8, pp. 1772-1786, Aug. 2013. DOI: 10.1109/TKDE.

2012.59.

[13] R. Chan, Q. Yang, and Y. D. Shen, “Mining high utility itemsets,” in

Third IEEE International Conference on Data Mining, Melbourne,

USA, pp. 19-26, 2003. DOI: 10.1109/ICDM.2003.1250893.

[14] H. Yao, H. J. Hamilton, and C. J. Butz, “A foundational approach to

mining itemset utilities from databases,” in Proceedings of the 2004

SIAM International Conference on Data Mining, pp. 482-486, Apr.

2004. DOI: 10.1137/1.9781611972740.51.

[15] W. Song, Y. Liu, and J. Li, (2014). “BAHUI: Fast and memory

efficient mining of high utility itemsets based on bitmap,” International

Journal of Data Warehousing and Mining, vol. 10, no. 1, pp. 1-15,
127 http://jicce.org

J. lnf. Commun. Converg. Eng. 21(2): 117-129, Jun. 2023
2014. DOI: 10.4018/ijdwm.2014010101.

[16] Y. Liu, W. K. Liao, and A. N. Choudhary, “A two-phase algorithm

for fast discovery of high utility itemsets,” in Pacific-Asia Conference

on Knowledge Discovery and Data Mining, Hanoi, Vietnam, pp.

689-695, 2005. DOI: 10.1007/11430919_79.

[17] Y. C. Li, J. S. Yeh, and C. C. Chang, “Isolated items discarding

strategy for discovering high utility itemsets,” Data and Knowledge

Engineering, vol. 64, no. 1, pp. 198-217, Jan. 2008. DOI: 10.1016/

j.datak.2007.06.009.

[18] C. F. Ahmed, S. K. Tanbeer, B. S. Jeong, and Y. K. Lee, “Efficient

tree structures for high utility pattern mining in incremental

databases,” IEEE Transactions on Knowledge and Data Engineering,

vol. 21, no. 12, pp. 1708-1721, Dec. 2009. DOI: 10.1109/TKDE.

2009.46.

[19] V. S. Tseng, C. W. Wu, B. E. Shie, and P. S. Yu, “UP-growth: an

efficient algorithm for high utility itemset mining,” in Proceedings of

the 16th ACM SIGKDD International Conference on Knowledge

Discovery and Data Mining, Washington DC, USA pp. 253-262,

2010. DOI: 10.1145/1835804.1835839.

[20] M. Liu and J. Qu, “Mining high utility itemsets without candidate

generation,” in Proceedings of the 21st ACM International

Conference on Information and Knowledge Management, Maui

Hawaii, USA, pp. 55-64, 2012. DOI: 10.1145/2396761.2396773.

[21] P. Fournier-Viger, C. W. Wu, S. Zida, and V. S. Tseng, “FHM: faster

high-utility itemset mining using estimated utility co-occurrence

pruning,” in International Symposium on Methodologies for

Intelligent Systems, Cham, vol. 8502, pp. 83-92, 2014. DOI: 10.1007/

978-3-319-08326-1_9.

[22] T. P. Hong, C. H. Lee, and S. L. Wang, “Effective utility mining with

the measure of average utility,” Expert Systems with Applications,

vol. 38, no. 7, pp. 8259-8265, Jul. 2011. DOI: 10.1016/j.eswa.2011.

01.006.

[23] G. C. Lan, T. P. Hong, and V. S. Tseng, “A projection-based

approach for discovering high average utility itemsets,” Journal of

Information Science and Engineering, vol. 28, no. 1, pp. 193-209,

2012.

[24] C. W. Lin, T. P. Hong, and W. H. Lu, “Efficiently mining high

average utility itemsets with a tree structure,” in Asian Conference on

Intelligent Information and Database Systems, Hue City, Vietnam,

pp. 131-139, 2010. DOI: 10.1007/978-3-642-12145-6_14.

[25] A. Y. Peng, Y. S. Koh, and P. Riddle, “mHUIMiner: A fast high

utility itemset mining algorithm for sparse datasets,” in Advances in

Knowledge Discovery and Data Mining, Jeju, South Korea, pp. 196-

207, 2017. DOI: 10.1007/978-3-319-57529-2_16.

[26] J. Pei, J. Han, and L. V. Lakshmanan, “Pushing convertible

constraints in frequent itemset mining,” Data Mining and Knowledge

DiscoveryM vol. 8, no. 3, pp. 227-252, May 2004. DOI: 10.1023/

B:DAMI.0000023674.74932.4c.

[27] K. K. Sethi and D. Ramesh, “HFIM: a Spark-based hybrid frequent

itemset mining algorithm for big data processing,” The Journal of

Supercomputing, vol. 73, no. 8, pp. 3652-3668, Jan. 2017. DOI:

10.1007/s11227-017-1963-4.

[28] G. Pyun, U. Yun, and K. H. Ryu, “Efficient frequent pattern mining

based on linear prefix tree,” Knowledge-Based Systems, vol. 55, pp.

125-139, Jan. 2014. DOI: 10.1016/j.knosys.2013.10.013.

[29] U. Yun, G. Lee, and K.H. Ryu, “Mining maximal frequent patterns

by considering weight conditions over data streams,” Knowledge-

Based Systems, vol. 55, pp. 49-65, Jan. 2014. DOI: 10.1016/

j.knosys.2013.10.011.

[30] C. W. Lin, T. P. Hong, and W. H. Lu, “An effective tree structure for

mining high utility itemsets,” Expert Systems with Applications, vol.

38, no. 6, pp. 7419-7424, Jun. 2011. DOI: 10.1016/j.eswa.2010.12.

082.

[31] V. S. Tseng, B. E. Shie, C. W. Wu, and P. S. Yu, “Efficient

algorithms for mining high utility itemsets from transactional

databases,” IEEE Transactions on Knowledge and Data Engineering,

vol. 25, no. 8, pp. 1772-1786, Aug. 2013. DOI: 10.1109/TKDE.

2012.59.

[32] U. Yun, H. Ryang, and K. H. Ryu, “High utility itemset mining with

techniques for reducing overestimated utilities and pruning

candidates,” Expert Systems with Applications, vol. 41, no. 8, pp.

3861-3878, Jun. 2014. DOI: 10.1016/j.eswa.2013.11.038.

[33] G. C. Lan, T. P. Hong, and V. S. Tseng, “An efficient projection-

based indexing approach for mining high utility itemsets,”

Knowledge and Information Systems, vol. 38, no. 1 pp. 85-107, Jan.

2014. DOI: 10.1007/s10115-012-0492-y.

[34] S. Krishnamoorthy, “Pruning strategies for mining high utility

itemsets,” Expert Systems with Applications, vol. 42, no. 5, pp. 2371-

2381, Apr. 2015. DOI: 10.1016/j.eswa.2014.11.001.

[35] S. Zida, P. Fournier-Viger, J. C. W. Lin, C. W. Wu, and V. S. Tseng,

“EFIM: a highly efficient algorithm for high-utility itemset mining,”

in Mexican International Conference on Artificial Intelligence,

Cuernavaca, Mexico, pp. 530-546, 2015. DOI: 10.1007/978-3-319-

27060-9_44.

[36] S. Krishnamoorthy, “HMiner: efficiently mining high utility

itemsets,” Expert Systems with Application, vol. 90, pp. 168-183,

Dec. 2017. DOI: 10.1016/j.eswa.2017.08.028.

[37] W. Song, Y. Liu, and J. Li, “BAHUI: fast and memory efficient

mining of high utility itemsets based on bitmap,” International

Journal of Data Warehousing and Mining, vol. 10, no. 1, pp. 1-15,

Jan. 2014. DOI: 10.4018/ijdwm.2014010101.

[38] J. C. W. Lin, L. Yang, P. Fournier-Viger, J. M. T. Wu, T. P. Hong, L.

S. L. Wang, and J. Zhan, “Mining high utility itemsets based on

particle swarm optimization,” Engineering Applications of Artificial

Intelligence, vol. 55, pp. 320-330, Oct. 2016. DOI: 10.1016/

j.engappai.2016.07.006.

[39] P. Fournier-Viger, J. C. W. Lin, C. W. Wu, V. S. Tseng, and U.

Faghihi, “Mining minimal high-utility itemsets,” in International

Conference on Database and Expert Systems Applications, Porto,

Portugal,, pp. 88-101, 2016. DOI: 10.1007/978-3-319-44403-1_6.

[40] P. Fournier-Viger, J. C. W. Lin, Q. H. Duong, and T. L. Dam, “FHM

+: faster high-utility itemset mining using length upper-bound

reduction,” in International Conference on Industrial, Engineering

and Other Applications of Applied Intelligent Systems, Morioka,

Japan,, pp. 115-127, 2016. DOI: 10.1007/978-3-319-42007-3_11.

[41] T. Lu, B. Vo, H. T. Nguyen, and T. P. Hong, “A new method for

mining high average utility itemsets,” in IFIP International

Conference on Computer Information Systems and Industrial

Management, Ho Chi Minh City, Vietnam, pp. 33-42, 2014. DOI:

10.1007/978-3-662-45237-0_5.

[42] C. W. Lin, T. P. Hong, and W. H. Lu, “Efficiently mining high

average utility itemsets with a tree structure,” in Asian Conference on

Intelligent Information and Database Systems, Hue City, Vietnam,

pp. 131-139, 2010. DOI: 10.1007/978-3-642-12145-6_14.

[43] J. C. W. Lin, T. Li, P. Fournier-Viger, T. P. Hong, J. Zhan, and M.

Voznak, “An efficient algorithm to mine high average-utility

itemsets,” Advanced Engineering Informatics, vol. 30, no. 2, pp. 233-

243, Apr. 2016. DOI: 10.1016/j.aei.2016.04.002.

[44] J. C. W. Lin, S. Ren, P. Fournier-Viger, and T. P. Hong, “EHAUPM:

efficient high average-utility pattern mining with tighter upper

bounds,” IEEE Access, vol. 5, pp. 12927-12940, 2017. DOI:

10.1109/ACCESS.2017.2717438.

[45] U. Yun and D. Kim, “Mining of high average-utility itemsets using

novel list structure and pruning strategy,” Future Generation
https://doi.org/10.56977/jicce.2023.21.2.117 128

Multi-Sized cumulative Summary Structure Driven Light Weight in Frequent Closed Itemset Mining to Increase High Utility
Computer Systems, vol. 68, pp. 346-360, Mar. 2017. DOI: 10.1016/

j.future.2016.10.027.

[46] J. C. W. Lin, S. Ren, T. P. Fournier-Viger, T. P. Hong, J. H. Su, and

B. Vo, “A fast algorithm for mining high average-utility itemsets,”

Applied Intelligence, vol. 47, no. 2, pp. 331-346. Sep. 2017. DOI:

10.1007/s10489-017-0896-1.

[47] J. C. W. Lin, S. Ren, and P. Fournier-Viger, “MEMU: more efficient

algorithm to mine high average utility patterns with multiple

minimum average-utility thresholds,” IEEE Access, vol. 6, pp. 7593-

7609, 2018. DOI: 10.1109/ACCESS.2018.2801261.

[48] J. M. T. Wu, J. C. W. Lin, M. Pirouz, and P. Fournier-Viger, “TUB-

HAUPM: tighter upper bound for mining high average-utility

patterns,” IEEE Access, vol. 6, pp. 18655-18669. DOI: 10.1109/

ACCESS.2018.2820740.

[49] T. Truong, H. Duong, B. Le, and P. Fournier-Viger, “Efficient

vertical mining of high average-utility itemsets based on novel

upper-bounds,” IEEE Transactions on Knowledge and Data

Engineering, vol. 31, no. 2, pp. 301-314, Feb. 2018. DOI: 10.1109/

TKDE.2018.2833478.

[50] T. Truong, H. Duong, B. Le, P. Fournier-Viger, and U. Yun,

“Efficient high average-utility itemset mining using novel vertical

weak upper-bounds,” Knowledge-Based Systems, vol. 183, p.104847,

Nov. 2019. DOI: 10.1016/j.knosys.2019.07.018.

[51] V. S. Tseng, C. W. Wu, P. Fournier-Viger, and P. S. Yu, “Efficient

algorithms for mining the concise and lossless representation of high

utility itemsets,” IEEE Transactions on Knowledge and Data

Engineering, vol. 27, no. 3, pp. 726-739, Mar. 2015. DOI: 10.1109/

TKDE.2014.2345377.

[52] C. W. Wu, P. Fournier-Viger, J. Y. Gu, and V. S. Tseng, “Mining

closed+ high utility itemsets without candidate generation,” in

Proceedings of the 2015 Conference on Technologies and

Applications of Artificial. Intelligence, Tainan, Taiwan, pp. 187-194,

2015. DOI: 10.1109/TAAI.2015.7407089.

[53] P. Fournier-Viger, S. Zida, W. J. C, Lin, C. W. Wu, and V. S. Tseng,

“EFIM-closed: Fast and memory efficient discovery of closed high-

utility itemsets,” in Machine Learning and Data Mining in Pattern

Recognition, New York, USA, pp. 199-213, 2016. DOI: 10.1007/

978-3-319-41920-6_15.

[54] T.-L. Dam, K. Li, P. Fournier-Viger, and Q. H. Duong, “CLS-Miner:

Efficient and effective closed high-utility itemset mining,” Frontiers

of Computer Science, vol. 13, no. 2, pp. 357-381, 2019. DOI:

10.1007/s11704-016-6245-4.

[55] SPMF: Java open-source data mining library [Internet], Available:

http://www.philippe-fournier-viger.com/spmf/.

[56] C. W. Wu, P. Fournier-Viger, J. Y. Gu, and V. S. Tseng, “Mining

closed+ high utility itemsets without candidate generation,” in

Proceedings of the Conference on Technologies. and Applications of

Artificial. Intelligence, Tainan, Taiwan, pp. 187-194, 2015. DOI:

10.1109/TAAI.2015.7407089.

[57] T. L. Dam, K. Li, P. Fournier-Viger, and Q. H. Duong, “CLS-Miner:

Efficient and effective closed high-utility itemset mining,” Frontiers

of Computer Science, vol. 13, no. 2, pp. 357-381, Apr. 2019. DOI:

10.1007/s11704-016-6245-4.

[58] K. K. Sethi and D. Ramesh D., “A fast high average-utility itemset

mining with efficient tighter upper bounds and novel list structure,”

The Journal of Supercomputing, vol. 76, no. 12, pp. 10288-10318,

Mar. 2020. DOI: 10.1007/s11227-020-03247-5.

[59] T. Wei, B. Wang, Y. Zhang, K. Hu, Y. Yao, and H. Liu, “FCHUIM:

Efficient Frequent and Closed High-Utility Itemsets Mining,” IEEE

Access, pp. 109928-109939, 2020. DOI: 10.1109/ACCESS.2020.

3001975.

Siva S
He received his Master of Computer Applications (M.CA) from the University of Madras, India in 2004. He has over 16

years of experience in the field of software research and development. He is currently employed as a senior engineering

manager in a company in Bangalore, India, where a healthcare mobile solution is being developed using IoT and AI.

Currently, he is pursuing a Ph.D. at REVA University, Bangalore, India. He is a member of IEEE.

Dr. Shilpa Chaudhari
Currently, she is working as an Associate Professor at the Department of CSE, MSRIT,

Bangalore. She has been a technology educator and corporate trainer since 1999. In the last 18 years, she has served in

various academic positions in technical institutes in Maharashtra and Karnataka. Her areas of research and teaching

include network security,RTOS, computational intelligence, wireless networks, and embedded system development. She is

a professional member of the Computer Society of India (CSI), a Life member since 2013, and an IEEE Member

#94611631, Bangalore Section.
129 http://jicce.org

