• Title/Summary/Keyword: Utility Delay

Search Result 69, Processing Time 0.023 seconds

Development of Decision Model and Management System to minimize Pavement Utility Cut for Road Facility (도로시설 재굴착 방지를 위한 의사결정모델 및 관리시스템 개발)

  • Cho, Jin-Young;Jang, Oun-Sung;Lee, Min-Jae
    • Korean Journal of Construction Engineering and Management
    • /
    • v.14 no.4
    • /
    • pp.164-171
    • /
    • 2013
  • In urban planning, road facility is used not only for the transportation purpose but also for the utility line space purpose such as electrical, gas, tele communication, heating, water, sewer, and so on. However, since these utilities are built by many different groups, it becomes very difficult to communicate each other. Delay in one party can cause another party's schedule delay but they don't commuicate often. Also, some delay in utility work can cause frequent pavement cut. And, this will impact on construction cost, schedule delay, low quality, user complain and cost. This study developed spatiotemporal decision model to prevent prequent utility cut for mega project such as new urban development project. In addition, this study developed utility cut management system to manage utility cut schedule under pavement. Finally, developed system was applied to new urban development project and verified there effectiveness.

An Analysis of Best Practices for Efficient Utility Relocation and an Inquiry into the Applicability of SUE (효율적인 지하지장물 이설을 위한 모범사례분석 및 SUE 적용에 관한 연구)

  • Lee, Seung-Hyun;Baek, Seung-Ho;Tae, Yong-Ho;Ahn, Bang-Ryul;Park, Hyeon-Yong
    • Proceedings of the Korean Institute Of Construction Engineering and Management
    • /
    • 2007.11a
    • /
    • pp.971-976
    • /
    • 2007
  • In the U.S., utility damages or utility delay caused by conflicts during the underground utility relocation is one of the weighty problem in the construction industry. Also, in domestic case, delay and additional cost caused by underground utility(i.e, electricity, communication, gas, water supply and sewerage) relocation has been happened so that there is an increase of claims for responsibility between owners and contractors. However, there is insufficient survey for the recent circumstance of additional cost for delay and design changes caused by utility relocation and shortage of enough research for solving and analyzing of causes and their ripple effect. This research presents a result of the study about the best practices of FHWA(Federal Highway Administration), SHAs(State Highway Agencies) and the utility companies managing utility relocation. Also, it presents the basic concept of SUE(Subsurface Utility Engineering), the most reliable tool of FHWA presented, and investigates the developing status about SUE in Korea. At the end of this paper, this research proposes a practical and more applicable study about the efficient utility relocation focusing on local industry.

  • PDF

Optimal Power and Rate Allocation based on QoS for CDMA Mobile Systems (CDMA 이동통신시스템을 위한 QoS 기반 최적 전송출력/전송률 할당 체계)

  • 장근녕
    • Journal of the Korean Operations Research and Management Science Society
    • /
    • v.28 no.4
    • /
    • pp.1-19
    • /
    • 2003
  • This paper studies power and rate control for data users on the forward link of CDMA system with two cells. The QoS for data users is specified by delay and error rate constraints as well as a family of utility functions representing system throughput and fairness among data users. Optimal power and rate allocation problem is mathematically formulated as a nonlinear programming problem, which is to maximize total utility under delay and error rate constraints, and optimal power and rate allocation scheme (OPRAS) is proposed to obtain a good solution in a fast time. Computational experiments show that the proposed scheme OPRAS works very well and increases total utility compared to the separate power and rate allocation scheme (SPARS) which considers each cell individually.

Stability of Slotted Aloha with Selfish Users under Delay Constraint

  • Chin, Chang-Ho;Kim, Jeong-Geun;Lee, Deok-Joo
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.5 no.3
    • /
    • pp.542-559
    • /
    • 2011
  • Most game-theoretic works of Aloha have emphasized investigating Nash equilibria according to the system state represented by the number of network users and their decisions. In contrast, we focus on the possible change of nodes' utility state represented by delay constraint and decreasing utility over time. These foregone changes of nodes' state are more likely to instigate selfish behaviors in networking environments. For such environment, in this paper, we propose a repeated Bayesian slotted Aloha game model to analyze the selfish behavior of impatient users. We prove the existence of Nash equilibrium mathematically and empirically. The proposed model enables any type of transmission probability sequence to achieve Nash equilibrium without degrading its optimal throughput. Those Nash equilibria can be used as a solution concept to thwart the selfish behaviors of nodes and ensure the system stability.

Wireless Packet Scheduling Algorithm for OFDMA System Based on Time-Utility and Channel State

  • Ryu, Seung-Wan;Ryu, Byung-Han;Seo, Hyun-Hwa;Shin, Mu-Yong;Park, Sei-Kwon
    • ETRI Journal
    • /
    • v.27 no.6
    • /
    • pp.777-787
    • /
    • 2005
  • In this paper, we propose an urgency- and efficiency-based wireless packet scheduling (UEPS) algorithm that is able to schedule real-time (RT) and non-real-time (NRT) traffics at the same time while supporting multiple users simultaneously at any given scheduling time instant. The UEPS algorithm is designed to support wireless downlink packet scheduling in an orthogonal frequency division multiple access (OFDMA) system, which is a strong candidate as a wireless access method for the next generation of wireless communications. The UEPS algorithm uses the time-utility function as a scheduling urgency factor and the relative status of the current channel to the average channel status as an efficiency indicator of radio resource usage. The design goal of the UEPS algorithm is to maximize throughput of NRT traffics while satisfying quality-of-service (QoS) requirements of RT traffics. The simulation study shows that the UEPS algorithm is able to give better throughput performance than existing wireless packet scheduling algorithms such as proportional fair (PF) and modified-largest weighted delay first (M-LWDF), while satisfying the QoS requirements of RT traffics such as average delay and packet loss rate under various traffic loads.

  • PDF

Packet Scheduling for Cellular Relay Networks by Considering Relay Selection, Channel Quality, and Packet Utility

  • Zhou, Rui;Nguyen, Hoang Nam;Sasase, Iwao
    • Journal of Communications and Networks
    • /
    • v.11 no.5
    • /
    • pp.464-472
    • /
    • 2009
  • In this paper, we propose a packet scheduling algorithm for cellular relay networks by considering relay selection, variation of channel quality, and packet delay. In the networks, mobile users are equipped with not only cellular but also user relaying radio interfaces, where base station exploits adaptive high speed downlink channel. Our proposed algorithm selects a user with good cellular channel condition as a relay station for other users with bad cellular channel condition but can get access to relay link with good quality. This can achieve flexible packet scheduling by adjusting transmission rates of cellular link. Packets are scheduled for transmission depending on scheduling indexes which are calculated based on user's achieved transmission rate, packet utility, and proportional fairness of their throughput. The performance results obtained by using computer simulation show that the proposed scheduling algorithm is able to achieve high network capacity, low packet loss, and good fairness in terms of received throughput of mobile users.

Edge Computing Task Offloading of Internet of Vehicles Based on Improved MADDPG Algorithm

  • Ziyang Jin;Yijun Wang;Jingying Lv
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.18 no.2
    • /
    • pp.327-347
    • /
    • 2024
  • Edge computing is frequently employed in the Internet of Vehicles, although the computation and communication capabilities of roadside units with edge servers are limited. As a result, to perform distributed machine learning on resource-limited MEC systems, resources have to be allocated sensibly. This paper presents an Improved MADDPG algorithm to overcome the current IoV concerns of high delay and limited offloading utility. Firstly, we employ the MADDPG algorithm for task offloading. Secondly, the edge server aggregates the updated model and modifies the aggregation model parameters to achieve optimal policy learning. Finally, the new approach is contrasted with current reinforcement learning techniques. The simulation results show that compared with MADDPG and MAA2C algorithms, our algorithm improves offloading utility by 2% and 9%, and reduces delay by 29.6%.

Proportionally fair load balancing with statistical quality of service provisioning for aerial base stations

  • Shengqi Jiang;Ying Loong Lee;Mau Luen Tham;Donghong, Qin;Yoong Choon Chang;Allyson Gek Hong Sim
    • ETRI Journal
    • /
    • v.45 no.5
    • /
    • pp.887-898
    • /
    • 2023
  • Aerial base stations (ABSs) seem promising to enhance the coverage and capacity of fifth-generation and upcoming networks. With the flexible mobility of ABSs, they can be positioned in air to maximize the number of users served with a guaranteed quality of service (QoS). However, ABSs may be overloaded or underutilized given inefficient placement, and user association has not been well addressed. Hence, we propose a three-dimensional ABS placement scheme with a delay-QoS-driven user association to balance loading among ABSs. First, a load balancing utility function is designed based on proportional fairness. Then, an optimization problem for joint ABS placement and user association is formulated to maximize the utility function subject to statistical delay QoS requirements and ABS collision avoidance constraints. To solve this problem, we introduce an efficient modified gray wolf optimizer for ABS placement with a greedy user association strategy. Simulation results demonstrate that the proposed scheme outperforms baselines in terms of load balancing and delay QoS provisioning.

Utility Interactive Photovoltaic Generation System using PWM Current Source Inverter (PWM 전류형인버터를 이용한 계통연계형 태양광 발전시스템)

  • 박춘우;성낙규;이승환;강승욱;이훈구;한경희
    • Proceedings of the KIPE Conference
    • /
    • 1996.06a
    • /
    • pp.109-112
    • /
    • 1996
  • In this paper, we composed utility interactive photovoltaic generation system of current source inverter, and controlled that low harmonic and high power factor are hold by supposing control and compensation method which is concerned with synchronous signal distortion and modulation delay. And we put parallel resonant circuit into dc link, so, magnitude of direct reactance was reduce by restraining direct current pulsation which had accumulation of pulsating power in alternating electrolytic condenser. Also we controlled that modulation factor is operated around maximum output of solar cell.

  • PDF

CONSTRUCTION SCHEDULE DELAY RISK ASSESSMENT BY USING COMBINED AHP-RII METHODOLOGY FOR AN INTERNATIONAL NPP PROJECT

  • HOSSEN, MUHAMMED MUFAZZAL;KANG, SUNKOO;KIM, JONGHYUN
    • Nuclear Engineering and Technology
    • /
    • v.47 no.3
    • /
    • pp.362-379
    • /
    • 2015
  • In this study, Nuclear Power Plant (NPP) construction schedule delay risk assessment methodology is developed and the construction delay risk is assessed for turnkey international NPP projects. Three levels of delay factors were selected through literature review and discussions with nuclear industry experts. A questionnaire survey was conducted on the basis of an analytic hierarchy process (AHP) and Relative Importance Index (RII) methods and the schedule delay risk is assessed qualitatively and quantitatively by severity and frequency of occurrence of delay factors. This study assigns four main delay factors to the first level: main contractor, utility, regulatory authority, and financial and country factor. The second and the third levels are designed with 12 sub-factors and 32 sub-sub-factors, respectively. This study finds the top five most important sub-sub-factors, which are as follows: policy changes, political instability and public intervention; uncompromising regulatory criteria and licensing documents conflicting with existing regulations; robust design document review procedures; redesign due to errors in design and design changes; and worldwide shortage of qualified and experienced nuclear specific equipment manufacturers. The proposed combined AHP-RII methodology is capable of assessing delay risk effectively and efficiently. Decision makers can apply risk informed decision making to avoid unexpected construction delays of NPPs.