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Abstract

Aerial base stations (ABSs) seem promising to enhance the coverage and

capacity of fifth-generation and upcoming networks. With the flexible mobility

of ABSs, they can be positioned in air to maximize the number of users served

with a guaranteed quality of service (QoS). However, ABSs may be overloaded

or underutilized given inefficient placement, and user association has not been

well addressed. Hence, we propose a three-dimensional ABS placement

scheme with a delay-QoS-driven user association to balance loading among

ABSs. First, a load balancing utility function is designed based on proportional

fairness. Then, an optimization problem for joint ABS placement and user

association is formulated to maximize the utility function subject to statistical

delay QoS requirements and ABS collision avoidance constraints. To solve this

problem, we introduce an efficient modified gray wolf optimizer for ABS place-

ment with a greedy user association strategy. Simulation results demonstrate

that the proposed scheme outperforms baselines in terms of load balancing

and delay QoS provisioning.
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1 | INTRODUCTION

Unmanned aerial vehicles (UAVs) have recently emerged
as a promising technology for beyond-fifth-generation
(5G) networks, enabling fast communication and com-
puting services. By mounting a base station on a UAV,
and aerial base station (ABS) can be established and
hover in three-dimensional (3D) space, and its position
can be flexibly adjusted to optimize mobile network cov-
erage [1, 2]. Thus, quick ABS deployment and coverage
enhancement can be achieved, especially when ground

base stations are nonfunctional in disasters or hotspot
areas requiring a capacity boost. Therefore, extensive
research and development on ABS mobile networks have
been conducted regarding various aspects, such as net-
work coverage enhancement, ABS trajectory optimiza-
tion, energy efficiency maximization, and power control
optimization. Recently, load balancing among ABSs has
gained increasing attention in academia and industry.
Because each ABS has a lower computational capacity
than a ground base station, the number of users that
each ABS can serve is limited [3]. Thus, inefficient ABS
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placement and user association can easily lead to load
imbalance among ABSs and poor quality-of-service (QoS)
provisioning, thereby overloading some ABSs and under-
utilizing others. Although several QoS-aware load balan-
cing schemes have been developed for traditional ground
networks [4–6], that is, conventional cellular networks,
these schemes are designed for fixed base stations and
cannot handle flexible 3D placement of ABSs for load
balancing. QoS-aware load balancing among ABSs is
more challenging than that among fixed base stations
because the 3D placement and user associations must be
jointly considered. This inevitably increases the dimen-
sionality of the load balancing problem, that is, the num-
ber of load balancing variables.

Several studies have attempted to address the load
balancing problem of ABSs [7–10]. In [9], a joint user
association and power control scheme is proposed to
achieve load balancing and user fairness in UAV-enabled
cellular networks based on matching game theory. In [7],
an ABS deployment scheme based on machine learning
is devised for load balancing in small-cell multi-ABS net-
works. In [8], load balancing among ABSs and data rate
fairness among users in multi-ABS networks are jointly
optimized using the virtual force field method and succes-
sive convex optimization. In [10], a software-defined
networking-based load balancing technique is proposed,
demonstrating improved load balancing among ABSs
with QoS guarantees.

Existing load balancing techniques have not
adequately considered the limited user capacity of ABSs.
In fact, an ABS may become overloaded if the number of
associated users exceeds its capacity. In addition, most
studies have neglected QoS provisioning for load
balancing [7–9]. This is vital for scenarios with real-time
multimedia traffic that requires low latency. In addition,
ABSs can be deployed in disaster-stricken areas to
provide emergency connectivity and support multimedia
services to improve the rescue efficiency [11]. ABSs are
also expected to be deployed to support live audio/video
streaming in hotspot areas where events such as concerts
or sports are held. Therefore, delay QoS provisioning is
necessary for load balancing among ABSs.

We modeled the delay QoS performance of a user by
adopting a statistical delay QoS metric called the effective
capacity (EC) [12]. The EC is channel dependent and char-
acterized by a delay-related parameter that reflects the QoS
requirements. This is interpreted as the maximum constant
arrival rate that a given time-varying service process can
support while satisfying the QoS requirements. The EC is
particularly convenient for analyzing the statistical QoS
performance of wireless transmissions. The EC of ABSs
has been investigated in [11, 13]. In [11], a joint ABS place-
ment and resource allocation scheme based on convex

optimization is introduced to maximize the EC of ABS net-
works, whereas in [13], the aggregate EC is maximized
under heterogeneous statistical delay-bounded QoS
requirements for downlink and uplink transmission groups
in ABS networks. However, these studies do not address
load balancing among ABSs. On the other hand, we aim to
address load balancing among ABSs while ensuring delay
QoS provisioning for every user to fill gaps of available
studies. Load balancing is challenging owing to the chan-
nel dynamics and several degrees of freedom of ABSs. To
overcome these challenges, we introduce a joint ABS place-
ment and user association scheme with statistical delay
QoS provisioning for load balancing among ABSs. The pro-
posed scheme is focused on downlink transmission.

The main contributions of this study are summarized
as follows:

1. We formulate a joint ABS placement and user
association problem to maximize a proportionally
fair load balancing utility function subject to delay
QoS requirements and collision avoidance
constraints.

2. Given the mixed-integer programming nature of
the problem, we propose a modified gray wolf
optimizer (GWO) for ABS placement with greedy
EC-based user association to efficiently solve load
balancing.

3. We analyze and demonstrate that the computa-
tional complexity of the proposed GWO-based load
balancing scheme is linear, and the network per-
formance using the proposed scheme is evaluated
in terms of probability of blocking, EC, and load
balance.

The remainder of this paper is organized as follows.
Problem modeling is presented in Section 2. Section 3
describes the proposed load balancing scheme. Simula-
tion results are reported in Section 4. Finally, Section 5
presents our conclusions.

2 | PROBLEM MODELING

In this section, we first present a multi-ABS network sce-
nario followed by descriptions of the channel model, EC
modeling, and problem formulation for load balancing in
the network.

2.1 | Network scenario

We consider an orthogonal frequency-division multiple-
access network with multiple ABSs deployed in a service
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area with several ground users, as shown in Figure 1. Let
A¼f1, …, i, …, mg be the set of m ABSs and G¼
f1, …, k, …, ng be the set of n ground users. We consider
orthogonal spectrum allocation among ABSs; that is, the
subchannels available to each ABS are orthogonal to
those available to the other ABSs. We assume that each
user associated with an ABS is assigned a subchannel.
Let the number of subchannels available to ABS i be
denoted by Nmax

i . Then, the maximum number of users
that can be supported by ABS i is also Nmax

i . For ABS
placement, we denote the 3D location coordinates of ABS
i by ðxi, yi, ziÞ, whereas those of user k are denoted by
ðxk, yk, 0Þ, noting that every user is assumed to remain at
ground level, that is, zk ¼ 0. Next, we define the following
user association variables:

ci,k ¼
1 if user k associates with ABS i,

0 otherwise,

�

8k�G: ð1Þ

We assume that ABS placement and user associa-
tion are jointly performed periodically over a long
period, during which the channel conditions (e.g., fast
fading) are averaged [5, 6]. This scenario can describe
static or low-mobility users, which is the focus of our
study. This scenario is relevant for disaster-struck and
damaged areas, where the movement of ground users is
limited in speed and distance. In these areas, the propa-
gation path loss between users and ABSs is stable [14]
over a long period. Similar assumptions were consid-
ered in [15] and [16] for joint ABS placement and user
association.

2.2 | Channel model

For channel modeling, we calculate the distance between
ABS i and user k as

di,k ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðxi�xkÞ2þðyi� ykÞ2þ z2i

q

8i�A, k �G, ð2Þ

and the distance between any two ABSs i and j as

li,j ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðxi�xjÞ2þðyi� yjÞ2þðzi� zjÞ2

q
8i, j�A, i≠ j: ð3Þ

Based on the air-to-ground channel model in [17], the
line-of-sight (LoS) path loss, PLLoS

i,k , and non-LoS (NLoS)
path loss, PLNLoS

i,k , between ABS i and user k can be
obtained as

PLLoS
i,k ¼ 20 log

4πf cdi,k
v

� �

þηLoS, ð4Þ

PLNLoS
i,k ¼ 20 log

4πf cdi,k
v

� �

þηNLoS, ð5Þ

where ηLoS and ηNLoS are the additional mean loss values
owing to the LoS and NLoS links, respectively, v is the
speed of light in vacuum, and f c is the carrier fre-
quency [17]. Next, the probability of LoS between ABS i
and user k is calculated as

PLoS
i,k ¼ 1

1þae�bðϕi,k�aÞ , ð6Þ

where ϕi,k ¼ 180
π tan�1 zi=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðxi� xkÞ2þðyi� ykÞ2

q� �� �

represents the elevation angle from user k at the ground
level to ABS i, and a and b are environmental parame-
ters [17]. The probability of NLoS between ABS i and
user k can be expressed as PNLoS

i,k ¼ 1�PLoS
i,k . Thus, the

mean path loss in decibels of the signal from ABS i to
user k can be estimated as

PLAvg
i,k ¼PLoS

i,k �PLLoS
i,k þPNLoS

i,k �PLNLoS
i,k : ð7Þ

From (7), the average path loss between ABS i and
user k can be rewritten as [17]

PLAvg
i,k ¼ M

1þae�bðϕi,k�aÞ þ20 logðdi,kÞþN , ð8Þ

where M¼ ηLoS�ηNLoS and N ¼ 20log ð4πf cÞ=vð ÞþηNLoS.
Using (8), the received signal-to-noise ratio for user k
from ABS i can be obtained as

γi,k ¼
pgi,kjhi,kj2

N0B
, ð9Þ

F I GURE 1 Multi-ABS network model.
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where p is the downlink transmit power of each ABS, N0

is the single-sided noise power spectral density, and hi,k

and gi,k ¼ 10ðPL
Avg
i,k =10Þ are the small-scale fading channel

coefficient and average path loss between ABS i and user
k, respectively. The signal-to-noise ratio is assumed to be
averaged over the ABS placement and user association
periods and to remain constant throughout the period
regardless of the channel dynamics because we also con-
sider the average fast fading over the period.

2.3 | EC

The instantaneous achievable data rate (in bits per frame)
between ABS i and user k can be expressed as [18]

Ri,k ¼TB log2ð1þ γi,kÞ, ð10Þ

where T is the timeframe length and B is the bandwidth
of a subchannel. For statistical delay QoS provisioning,
we employ the EC QoS metric [12] to model the latency
requirement of each user. The EC is a link-layer channel
model characterized by the probability of a nonempty
buffer and QoS requirement of a connection. Alterna-
tively, it can be interpreted as the maximum constant
arrival rate supported by a given departure or service pro-
cess. In the EC, delay QoS exponent θ determines the
strictness of the latency requirement for a traffic flow.

According to the large deviation principle, the buffer
length overflow probability, that is, the probability that
the delay exceeds the maximum delay bound, can be
expressed as

PfDðtÞ≥Dmaxg≈ βðtÞe�θΛðθÞDmax , ð11Þ

where DðtÞ is the delay experienced by a packet arriving
at time t, Dmax is the delay bound required by the connec-
tion, βðtÞ¼PfDðtÞ≥ 0g is the probability of an event in
which the queue is nonempty, and ΛðθÞ is the achievable
EC of the traffic flow. In (11), a large θ leads to a high
decay rate for the probability, implying that the QoS
requirement is stringent. On the other hand, a small θ
indicates a low decay rate for the probability in (11), indi-
cating a loose QoS requirement. We define the EC
between ABS i and user k as [12]

Λi,k ¼� 1
θk

ln E e�θkRi,k
� �

, ð12Þ

where Eð�Þ represents the expectation operator with
respect to the fading state and θk is the delay QoS

exponent of user k. As we consider small-scale Rayleigh
fading, jhi,kj2 is treated as a random variable of Q with
the following exponential probability distribution
function:

f Q qð Þ¼ 1
μ
e�

q
μ, ð13Þ

where Q¼ jhi,kj2 and μ is the mean of the exponential
probability distribution function. For simplicity, we
assume that μ¼ 1 to obtain the following proposition.

Proposition 1. The EC between the ABS i
and user k can be expressed in the following
closed form:

Λi,k ¼� 1
θk

ln
e

1
Ki,k

Ki,k
EJk

1
Ki,k

� �" #

, ð14Þ

where Ki,k ¼ pgi,k=N0B and EJkð�Þ is an
exponential integral function with
Jk ¼ θkTB= ln2.

Proof. Note that E e�θkRi,k
� �

can be obtained as

E e�θkRi,k
� � ¼

ðþ∞

0
e�θkB log2ð1þγi,kðqÞÞf QðqÞdq

¼
ðþ∞

0
e
�θkB log2 1þpgi,kq

N0B

� 	

e�qdq:

ð15Þ

Let ti,k ¼ 1þKi,kq. Hence, (15) can be
expressed as [19]

E e�θi,kRi,k
� �¼

ðþ∞

1
t�Jk e

� t�1
Ki,kdt ≈

e
1

Ki,k

Ki,k
EJk

1
Ki,k

� �

: ð16Þ

Substituting (16) into (12), (14) is
obtained. □

2.4 | Problem formulation

We define the load of ABS i as the ratio of the number of
users served by the ABS to its maximum user capacity:

Δi ¼
P

k � G ci,k
Nmax

i
, 8i�A, ð17Þ

where Δi is the load of ABS i and the numerator repre-
sents the current number of users served by ABS i. To
balance the load among ABSs, an appropriate utility
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function must be designed and optimized. We aim to
achieve proportionally fair load balancing among ABSs
by adopting the following logarithmic utility function of
the ABS load: φiðΔiÞ¼ logðΔiÞ. The load balancing utility
function can be designed as follows:

U x,y,z,cð Þ¼
X

i � A
φiðΔiÞ, ð18Þ

where x¼fx1, …, xi, …, xmg, y¼fy1, …, yi, …, ymg,
z¼fz1, …, zi, …, zmg, and c¼fc1,1, …, ci,k, …, cm,ng.
Because the logarithmic function has a diminishing
return property with respect to Δi, the maximization
of (18) promotes proportional fairness in load balan-
cing [20]. Next, we formulate the load balancing problem
for multi-ABS networks as the following joint 3D ABS
placement and user association problem that
maximizes (18):

P :max
x,y,z,c

U x,y,z,cð Þ ð19Þ

subject to

X

i � A

ci,k ≤ 1 8k�G, ð20Þ

X

i � A

ci,kΛi,k ≥Rk 8k�G, ð21Þ

li,j > dsec 8i, j�A, i≠ j, ð22Þ

xmin ≤ xi ≤ xmax 8i�A, ð23Þ

ymin ≤ yi ≤ ymax 8i�A, ð24Þ

zmin ≤ zi ≤ zmax 8i�A, ð25Þ

ci,k � f0, 1g 8i�A, k�G, ð26Þ

0≤Δi ≤ 1 8i�A, ð27Þ

where Rk is the required EC of user k and dsec is the secu-
rity distance between any two ABSs to avoid collisions.
Constraint (20) ensures that each user is associated with
only one ABS. Constraint (21) ensures that each user sat-
isfies the EC requirements for statistical delay QoS guar-
antees. To prevent collisions between ABSs,
constraint (22) ensures that the 3D distance between any
two ABSs exceeds dsec . As the locations of the ABSs are
bounded by the service area and altitude, con-
straints (23), (24), and (25) are enforced to ensure that
the positions of ABSs are within the service areas and
allowable altitude. Constraint (26) guarantees binary-
valued user association variables. Owing to the limited

user capacity of each ABS,
P

k � G ci,k ≤Nmax
i . Thus, Δi

cannot exceed 1, as indicated by constraint (27).

3 | PROPOSED SCHEME

Problem P is a mixed-integer programming problem, in
which x,y,z are continuously valued and c is binary val-
ued. This problem is difficult to solve because of its non-
convex nature, and especially because it consists of
several continuous and binary variables. Exhaustive
brute-force methods are computationally impractical
given that 3D ABS placement and user association must
be efficiently performed within a limited fixed timeframe.
Swarm intelligence algorithms are promising for efficient
optimization of nonconvex problems with several vari-
ables. Notably, the GWO, recently proposed in [21] as a
new swarm intelligence algorithm, can successfully solve
various optimization problems.

The GWO is inspired by the behavior of gray
wolves, who prefer to live in groups under a strict
socially dominant hierarchy. In addition, the wolf pack
exhibits the social behavior of pack hunting, which can
describe an optimization mechanism. Compared with
other swarm intelligence algorithms, the GWO involves
relatively fewer parameters and is simple, easy to use,
flexible, and stable. It has been applied to ABS deploy-
ment and path planning [22, 23]. Motivated by the
strengths of GWO, we developed a GWO-based ABS
placement and user association algorithm to solve prob-
lem P. In the following section, we describe ABS place-
ment and user association under the GWO algorithmic
framework.

3.1 | ABS placement

In the GWO, the position of each gray wolf represents a
candidate solution. The gray wolf with the best solution
is denoted as alpha ðαÞ, whereas those with the second-
and third-best solutions are denoted as beta ðβÞ and delta
ðδÞ, respectively, while the remaining gray wolves are
denoted as omega ðωÞ. Similar to the wolf pack hunting
behavior, α, β, and δ guide the hunting behavior of the
wolf pack. To mathematically model the behavior of gray
wolves surrounding the prey during hunting, the follow-
ing equations were derived by [21]:

DðtÞ¼ jC �XpðtÞ�XwðtÞj, ð28Þ

Xwðtþ1Þ¼XpðtÞ�A �DðtÞ, ð29Þ

where t is the iteration index representing the timestep,
Xw is the position vector of the gray wolf, and Xp is the
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position vector of the prey. Coefficient vectors A and C
are obtained as

A¼ 2a �r1�a, ð30Þ

C¼ 2r2, ð31Þ

where r1 and r2 are vectors with each element randomly
set within ½0, 1� and a is a vector whose elements linearly
decrease from 2 to 0 over the iterations to obtain the solu-
tion. By decreasing the value of the elements in a, vector
A can drive the gray wolf to move closer to the prey to
attack it. Regarding optimization, this behavior encour-
ages local exploitation, where the search agent attempts
to find a better solution near the current best solution.
However, with an increased value of the elements in a,
the gray wolf tends to move away from the prey to search
for a better solution. This behavior is equivalent to the
global exploration of solutions during optimization.
Vector C introduces randomness in the movement of the
gray wolf to promote global exploration and solution
diversity.

To implement the GWO, N gray wolves are created to
search for the solution. We denote X¼
fX1, …, Xw, …, XNg as the set of position vectors of the
gray wolves, where Xw represents the position vector (i.e.,
candidate solution) of the w-th gray wolf. To determine
the solution quality for a gray wolf, we evaluate its fitness
position vector. Let F Xwð Þ be the fitness function of the
w-th gray wolf. In each iteration, The fitness value of
each gray wolf is evaluated. The GWO identifies gray
wolves with the three highest fitness values and stores
the consecutive position vectors as alpha (Xα), beta (Xβ),
and delta (Xδ). Then, the position of each gray wolf is
updated as follows:

DαðtÞ¼ jC1 �XαðtÞ�XwðtÞj, ð32Þ

Xα1ðtÞ¼XαðtÞ�A1 �DαðtÞ, ð33Þ

DβðtÞ¼ jC2 �XβðtÞ�XwðtÞj, ð34Þ

Xβ2ðtÞ¼XβðtÞ�A2 �DβðtÞ, ð35Þ

DδðtÞ¼ jC3 �XδðtÞ�XwðtÞj, ð36Þ

Xδ3ðtÞ¼XδðtÞ�A3 �DδðtÞ, ð37Þ

Xwðtþ1Þ¼Xα1ðtÞþXβ2ðtÞþXδ3ðtÞ
3

, ð38Þ

where C1, C2, and C3 are calculated based on (31) and
A1, A2, and A3 are calculated based on (30). The entire

process is repeated until the maximum number of itera-
tions is reached.

Because P is a constrained optimization problem
with continuous and binary variables, the conventional
GWO cannot be applied directly. Therefore, we propose a
modified GWO-based ABS placement and user associa-
tion scheme for problem P, which is designed as follows.
The position of the w-th gray wolf is given by

Xw ¼ xðwÞ1 , yðwÞ1 , zðwÞ1 , …, xðwÞi , yðwÞi , zðwÞi , …, xðwÞm , yðwÞm , zðwÞm

n o
,

where fxðwÞi , yðwÞi , zðwÞi g are the 3D coordinates of ABS i
stored in the position vector of the w-th gray wolf. To
deal with constraints (23)–(25), we implement the follow-
ing strategy:

Xwð jÞ¼ r2 Xmax ð jÞ�Xmin ðjÞð ÞþXmin ð jÞ, ð39Þ

where XωðjÞ is the j-th element of Xω, r2 is a random
value ranging in [0, 1], and

Xmax ð jÞ¼
xmax if Xωð jÞ� fxiji�Ag
ymax if Xωð jÞ� fyiji�Ag
zmax if Xωð jÞ� fziji�Ag,

8
><

>:

Xmin ð jÞ¼
xmin if XωðjÞ� fxiji�Ag
ymin if XωðjÞ� fyiji�Ag
zmin if XωðjÞ� fziji�Ag:

8
><

>:

Through (39), ABSs that are placed at locations beyond
the boundaries of the service area are randomly
repositioned within the boundaries. Algorithm 1 summa-
rizes the steps enforcing constraints (23)–(25). In
principle, Algorithm 1 checks whether each variable in
the position vector of each gray wolf, which is updated
using (38), exceeds the boundary values defined in con-
straints (23)–(25), as described by step 4. If the boundary
value of a variable is exceeded, the algorithm invokes
step 5 to update the variable using (39).
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To ensure constraint (22), we introduce the
collision-avoidance algorithm described in Algorithm 2.
In this algorithm, the 3D distance between ABS i and
each of the other ABSs (that is, ABSs j�A ∖ fig) is
calculated using (3) (step 5). If the distance is
shorter than security distance dsec , the 3D position of
ABS i is randomly reset using (39), as described in
steps 7–10.

3.2 | EC-based user association

The position vector of each gray wolf only represents
the 3D coordinates of the ABSs, and user
association variables are also required to evaluate the
fitness function. As each user must satisfy con-
straint (20) and delay QoS requirement (21), we
apply a greedy user association strategy, in which
each user selects the ABS that provides the largest
EC given the 3D coordinates of all the ABSs.
Thus, the association for user k can be formulated as
follows:

ci,k ¼
1 i¼ arg max j � AΛj,k

0 otherwise:

�

ð40Þ

The final user association result must also satisfy
constraint (27) because the number of users served by
each ABS i is limited to Nmax

i . Thus, the proposed

greedy user association algorithm sequentially associ-
ates users with the ABS that provides the largest EC
while ensuring that the selected ABS is not overloaded
(see Algorithm 3). For each user, the algorithm first
estimates the achievable EC of the user per ABS
using (12) in steps 3–5. Next, user association
described by steps 6–15 is executed. The ABS that pro-
vides the highest achievable EC is first identified.
Then, if constraint (27) is satisfied when the ABS is
associated to the user, user association is completed.
Otherwise, user association is restarted, and the previ-
ously identified ABS is excluded.

3.3 | Fitness function

To evaluate the fitness of each gray wolf, the objective
function in (19) is the natural choice of fitness function.
However, each user must be placed within the effective
coverage area of its associated ABS, such that con-
straint (21) in problem P is satisfied. The user association
described by Algorithm 3 does not guarantee that the
largest achievable EC provided to users by their associ-
ated ABS is sufficient to satisfy constraint (21). Thus,
because the achievable EC depends on the distance
between each user and its associated ABS, the ABS must
be positioned such that every user can meet its target EC
requirement. To this end, the degree of violation of con-
straint (21) must be reflected in the fitness value of each
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gray wolf. Therefore, we convert this constraint into a
penalty function and incorporate it into the fitness func-
tion as follows:

Fwðx, y, z, cÞ¼
X

i � A

φðΔiÞ�ψ
X

k � G

Rk�
X

i � A

ci,kΛi,k

!

, ð41Þ

where Fwðx, y, z, cÞ is the fitness function of the w-th
gray wolf and ψ is the weight of constraint (21), which
determines the priority of the penalty function in the fit-
ness evaluation. Note that variables x, y, and z are
extracted from the position vector of the gray wolf. If con-
straint (21) is violated, the fitness value decreases, while
the value increases otherwise. This fitness function
encourages all gray wolves to search for better candidate
solutions without incurring a high penalty on the fitness
values.

3.4 | GWO-based load balancing

Algorithm 4 summarizes the proposed GWO-based
ABS placement and user association scheme for load
balancing. In step 1, a population of gray wolves is
initialized with random position vectors. Then, user
association is performed using Algorithm 3 followed by
fitness evaluations of the gray wolves (steps 2–6). Next,
in steps 9–11, the position vectors of the gray wolves
are updated using (38). The position vectors are
additionally bounded using Algorithm 1, and collision
avoidance is performed using Algorithm 2 in steps
12–15. Subsequently, user association is performed
again, followed by fitness evaluations of the gray
wolves (steps 17–23). Given the fitness values of
the gray wolves, the position vectors of wolves α, β,
and δ are updated in step 24. Steps 8–26 are repeated
until the maximum number of iterations, Tmax , is
reached.

The time complexity of Algorithm 4 is analyzed.
For initialization, Algorithm 4 has a complexity of
OðNmÞ. The calculation of the control parameters in
Algorithm 4 has a complexity of OðNmÞ. The update
of the gray wolf positions has a complexity of OðNmÞ.
The calculation of the EC and user association has a
complexity of OðNmnÞ. The evaluation of the
fitness value per gray wolf has a complexity of OðNmÞ.
Hence, the total time complexity for an iteration of
Algorithm 4 is OðNmÞ. Over the maximum number of
iterations, the time complexity of Algorithm 4 is
OðNmTmax Þ.

4 | RESULTS AND DISCUSSION

4.1 | Simulation settings

For the performance evaluation, a geographical area of
500�500 m2 with four ABSs was considered. We set
xmin ¼ 0 m, xmax ¼ 500 m, ymin ¼ 0 m, ymax ¼ 500 m,
zmin ¼ 150 m, zmax ¼ 300 m, f c ¼ 2 GHz, Nmax

i ¼ 50 with
a 10-MHz bandwidth [24] for all i�A, and N0 ¼�174
dBm/Hz [17]. In addition, we set θk ¼ 0:001 for all k�G
and assumed an urban environment. The parameters
related to path loss were set as follows: a¼ 0:6, b¼ 0:11,
ηLoS ¼ 1, and ηNLoS ¼ 20 [25, 26]. For the proposed
scheme, the weight of the fitness function was set to
ψ ¼ 10�6. The population size of the GWO was N ¼ 20,
and the maximum number of iterations was set to
Tmax ¼ 100. Results were generated and averaged over
30 realizations.

For comparison, we also evaluated the following base-
line schemes: (i) Random ABS placement and user asso-
ciation [27] denoted as RnD, (ii) geographical
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partitioning-based ABS deployment and user associa-
tion [28] denoted as PD, and (iii) QoS-oriented 3D multi-
ple ABS deployment [29] denoted as QoS-Prior. The
proposed scheme was denoted as GWO. We evaluated
the proposed and baseline schemes in terms of the fol-
lowing performance metrics:

• Probability of blocking: Ratio of the number of blocked
users, who are dropped from their associated ABS
owing to unavailability of subchannels or violation of
constraint (21), to the total number of users in the net-
work, which can be calculated by
ðn�P i � A

P
k � Gci,kÞ=n.

• Total EC: Sum of EC over all the users in the network.
• Jain’s fairness index [30]: Load balancing performance

indicator for multi-ABS network. We define it as
P

i � AΔi
� �2

=m
P

i � AΔi
2. A higher fairness index indi-

cates more balanced loading.

4.2 | Results

We first evaluated the convergence of the proposed scheme
in two scenarios. First, the performance of the proposed
and baseline schemes was evaluated for different numbers
of users, with Rk = 6 Kbits/frame for all k�G. Second,
the performance was evaluated by varying the EC
requirements per user for n¼ 200 users in the network.

4.2.1 | Convergence performance

Figure 2 shows the convergence of the proposed
scheme over 100 iterations in a scenario with 200

users and Rk = 6 Kbits/frame for every user k�G. The
convergence values are averaged over 30 realizations.
The fitness value increases with the number of iterations.
Hence, the proposed scheme can maximize the
fitness function. In addition, it converges after 80 itera-
tions, which is reasonably fast. In addition, the 95%
confidence intervals from the 80th iteration onward indi-
cate that the proposed scheme is considerably stable at
convergence.

4.2.2 | Scenario with varying numbers of
users

Figure 3A shows the probability of blocking achieved
by the proposed and baseline schemes. When the num-
ber of users in the network exceeds 200, the probability
drastically increases. This is because the current net-
work can serve up to 200 users because the maximum
user capacity of each of the four ABSs is 50. Overall,
the proposed scheme outperforms the baseline schemes
because constraint (21) is a penalty function in the fit-
ness function for the GWO. Hence, the proposed
scheme increases the number of users associated with
QoS guarantees. In contrast, the worst performance is
provided by the QoS-Prior scheme because it only con-
siders the users’ signal-to-noise ratio requirements and
tends to shrink the effective coverage area of each ABS.
Consequently, it fails to guarantee adequate ECs to
meet the minimum required EC imposed by
constraint (22).

Figure 3B shows the EC of the proposed and baseline
schemes. The proposed scheme performs better than the
baseline schemes. When the number of users reaches
250, the performance of the proposed scheme stagnates
because it focuses on balancing the load among ABSs and
associates the users if their minimum EC requirement is
satisfied. Consequently, a small cost of the total EC is
incurred, particularly when the number of users is large.
The PD and RnD schemes provide higher ECs when the
number of users exceeds 200 but at the expense of a
higher probability of blocking, as shown in Figure 3A.
Meanwhile, the QoS-Prior scheme has the worst perfor-
mance because it disregards the EC.

Figure 3C shows Jain’s fairness index obtained using
the proposed and baseline schemes. The proposed
scheme is superior to the baseline schemes for different
numbers of users. This is attributed to the optimization
of the proportionally fair utility function in the proposed
scheme, which contributes to load balancing in the net-
work. Such function is not considered in the baseline
schemes, which thus provide an inferior fairness
performance.F I GURE 2 Convergence of proposed scheme.
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4.2.3 | Scenario with varying EC
requirements

Figure 4A shows that the proposed scheme outperforms
the baseline schemes with the lowest probabilities of
blocking across different EC requirements. Even with
increasing EC demand, the proposed scheme ensures that
more users are served in the network owing to the GWO.

Figure 4B shows that the proposed scheme achieves a
higher total EC for the network than the baseline
schemes. This is again attributed to the GWO that finds
the ABS positions to meet the EC requirements of each
user. In addition, the greedy user association algorithm
ensures that every user associates with the ABS that maxi-
mizes the EC. Hence, the total EC of the network is high.

Figure 4C shows the load balancing performance of
the proposed and baseline schemes in terms of Jain’s fair-
ness index. The proposed scheme achieves a substantial
performance improvement over the baseline schemes.

Hence, the proposed scheme can achieve better load bal-
ancing among ABSs compared with the baseline schemes,
even with increasing EC requirements. Remarkably, the
proposed scheme consistently achieves a Jain’s fairness
index above 99% across the different EC requirements.

5 | CONCLUSION

Load balancing in multi-ABS networks is vital for effi-
cient network utilization and delay QoS provisioning.
Thus, it requires effective and efficient joint ABS place-
ment and user association. We propose a GWO-based
ABS placement scheme with a greedy EC-based user
association algorithm for proportionally fair load balan-
cing among ABSs. The proposed scheme achieves a more
balanced load among ABSs, lower probability of block-
ing, and higher EC compared with baseline schemes
under scenarios with different numbers of users and EC

F I GURE 4 Performance of multi-ABS network with varying EC requirements in terms of (A) probability of blocking, (B) total

achievable EC, and (C) Jain’s fairness index.

F I GURE 3 Performance of multi-ABS network with varying numbers of users in terms of (A) probability of blocking, (B) total

achievable EC, and (C) Jain’s fairness index.
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requirements. In future work, we will investigate the
joint ABS placement and user association with handover
management for load balancing in multi-ABS networks
with high user mobility.
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