• Title/Summary/Keyword: User-defined Model

Search Result 415, Processing Time 0.027 seconds

Perforation optimization of hydraulic fracturing of oil and gas well

  • Zhu, Hai Yan;Deng, Jin Gen;Chen, Zi Jian;An, Feng Chen;Liu, Shu Jie;Peng, Cheng Yong;Wen, Min;Dong, Guang
    • Geomechanics and Engineering
    • /
    • v.5 no.5
    • /
    • pp.463-483
    • /
    • 2013
  • Considering the influences of fluid penetration, casing, excavation processes of wellbore and perforation tunnels, the seepage-deformation finite element model of oil and gas well coupled with perforating technique is established using the tensile strength failure criterion, in which the user-defined subroutine is developed to investigate the dynamic evolvement of the reservoir porosity and permeability. The results show that the increases of perforation angle and decreases of perforation density lead to a higher fracture initiation pressure, while the changes of the perforation diameter and length have no evident influences on the fracture initiation pressure. As for initiation location for the fracture in wellbore, it is on the wellbore face while considering the presence of the casing. By contrast, the fractures firstly initiate on the root of the tunnels without considering casing. Besides, the initial fracture position is also related with the perforation angle. The fracture initiation position is located in the point far away from the wellbore face, when the perforation angle is around $30^{\circ}$; however, when the perforation angle is increased to $45^{\circ}$, a plane fracture is initiated from the wellbore face in the maximum horizontal stress direction; no fractures was found around perforation tunnels, when the angel is close to $90^{\circ}$. The results have been successfully applied in an oilfield, with the error of only 1.1% comparing the fracture initiation pressure simulated with the one from on-site experiment.

An extended finite element method for modeling elastoplastic FGM plate-shell type structures

  • Jrad, Hanen;Mars, Jamel;Wali, Mondher;Dammak, Fakhreddine
    • Structural Engineering and Mechanics
    • /
    • v.68 no.3
    • /
    • pp.299-312
    • /
    • 2018
  • In this paper, an extended finite element method is proposed to analyze both geometric and material non-linear behavior of general Functionally Graded Material (FGM) plate-shell type structures. A user defined subroutine (UMAT) is developed and implemented in Abaqus/Standard to study the elastoplastic behavior of the ceramic particle-reinforced metal-matrix FGM plates-shells. The standard quadrilateral 4-nodes shell element with three rotational and three translational degrees of freedom per node, S4, is extended in the present study, to deal with elasto-plastic analysis of geometrically non-linear FGM plate-shell structures. The elastoplastic material properties are assumed to vary smoothly through the thickness of the plate-shell type structures. The nonlinear approach is based on Mori-Tanaka model to underline micromechanics and locally determine the effective FGM properties and self-consistent method of Suquet for the homogenization of the stress-field. The elasto-plastic behavior of the ceramic/metal FGM is assumed to follow Ludwik hardening law. An incremental formulation of the elasto-plastic constitutive relation is developed to predict the tangent operator. In order to to highlight the effectiveness and the accuracy of the present finite element procedure, numerical examples of geometrically non-linear elastoplastic functionally graded plates and shells are presented. The effects of the geometrical parameters and the volume fraction index on nonlinear responses are performed.

Smart Home Personalization Service based on Context Information using Speech (음성인식을 이용한 상황정보 기반의 스마트 흠 개인화 서비스)

  • Kim, Jong-Hun;Song, Chang-Woo;Kim, Ju-Hyun;Chung, Kyung-Yong;Rim, Kee-Wook;Lee, Jung-Hyun
    • The Journal of the Korea Contents Association
    • /
    • v.9 no.11
    • /
    • pp.80-89
    • /
    • 2009
  • The importance of personalized services has been attracted in smart home environments according to the development of ubiquitous computering. In this paper, we proposed the smart home personalized service system based on context information using the speech recognition. The proposed service consists of an OSGi framework based service mobile manager, service manager, voice recognition manager, and location manager. Also, this study defines the smart home space and configures the commands of units, sensor information, and user information that are largely used in the defined space as context information. In particular, this service identifies users who exist in the same space that shows a difficulty in the identification using RFID through the training model and pattern matching in voice recognition and supports the personalized service of smart home applications. In the results of the experiment, it was verified that the OSGi based automated and personalized service can be achieved through verifying users in the same space.

A Case Study on the Application of Systems Engineering to the Development of PHWR Core Management Support System (시스템엔지니어링 기법을 적용한 가압중수로 노심관리 지원시스템 개발 사례)

  • Yeom, Choong Sub;Kim, Jin Il;Song, Young Man
    • Journal of the Korean Society of Systems Engineering
    • /
    • v.9 no.1
    • /
    • pp.33-45
    • /
    • 2013
  • Systems Engineering Approach was applied to the development of operator-support core management system based on the on-site operation experience and document of core management procedures, which is for enhancing operability and safety in PHWR (Pressurized Heavy Water Reactor) operation. The dissertation and definition of the system were given on th basis of investigating and analyzing the core management procedures. Fuel management, detector calibration, safety management, core power distribution monitoring, and integrated data management were defined as main user's requirements. From the requirements, 11 upper functional requirements were extracted by considering the on-site operation experience and investigating documents of core management procedures. Detailed requirements of the system which were produced by analyzing the upper functional requirements were identified by interviewing members who have responsibility of the core management procedures, which were written in SRS (Software Requirement Specification) document by using IEEE 830 template. The system was designed on the basis of the SRS and analysis in terms of nuclear engineering, and then tested by simulation using on-site data as a example. A model of core power monitoring related to the core management was suggested and a standard process for the core management was also suggested. And extraction, analysis, and documentation of the requirements were suggested as a case in terms of systems engineering.

Hand gesture based a pet robot control (손 제스처 기반의 애완용 로봇 제어)

  • Park, Se-Hyun;Kim, Tae-Ui;Kwon, Kyung-Su
    • Journal of Korea Society of Industrial Information Systems
    • /
    • v.13 no.4
    • /
    • pp.145-154
    • /
    • 2008
  • In this paper, we propose the pet robot control system using hand gesture recognition in image sequences acquired from a camera affixed to the pet robot. The proposed system consists of 4 steps; hand detection, feature extraction, gesture recognition and robot control. The hand region is first detected from the input images using the skin color model in HSI color space and connected component analysis. Next, the hand shape and motion features from the image sequences are extracted. Then we consider the hand shape for classification of meaning gestures. Thereafter the hand gesture is recognized by using HMMs (hidden markov models) which have the input as the quantized symbol sequence by the hand motion. Finally the pet robot is controlled by a order corresponding to the recognized hand gesture. We defined four commands of sit down, stand up, lie flat and shake hands for control of pet robot. And we show that user is able to control of pet robot through proposed system in the experiment.

  • PDF

The National Forest Inventory of the United States of America

  • McRoberts, Ronald E.
    • Journal of Forest and Environmental Science
    • /
    • v.24 no.3
    • /
    • pp.127-135
    • /
    • 2008
  • The mission of the Forest Inventory and Analyis (FIA) program of the Forest Service, U.S. Department of Agriculture, is to conduct the national forest inventory of the United States of America for purposes of estimating the area of forest land; the volume, growth, and removal of forest resources; and the health of the forest. Users of FIA data, estimates, and related products include land managers, policy and decision-makers, forest industry, environmental organizations, and university researchers. To accomplish its mission, the FIA program has established a sampling design with an intensity of approximately one permanent plot per 2,400 ha across the entire country. Depending on the region of the country, each plot is remeasured at intervals of five or 10 years. The program releases data annually and reports estimates at the county level for each state every five years. Due to budgetary constraints and natural variability among plot observations, sufficient numbers of plots cannot be measured to satisfy precision guidelines for the estimates of many variables unless the estimation process is enhanced using ancillary data. Classified satellite imagery has been demonstrated to be a source of ancillary data that can be used with stratified estimation techniques to increase the precision of estimates with little corresponding increase in costs. A crucial factor restricting the utility of FIA data is that the exact locations of inventory plots cannot be released to the public. Thus, users are generally not able to obtain estimates for small areas or for their own areas of interest if exact plot locations are required. To compensate, satellite imagery, inventory plot data, and the k-Nearest Neighbors technique are being used to construct Internet-based maps of forest attributes from which estimates for arbitrary user-defined areas of interest may be obtained.

  • PDF

A 3D RVE model with periodic boundary conditions to estimate mechanical properties of composites

  • Taheri-Behrooz, Fathollah;Pourahmadi, Emad
    • Structural Engineering and Mechanics
    • /
    • v.72 no.6
    • /
    • pp.713-722
    • /
    • 2019
  • Micromechanics is a technique for the analysis of composites or heterogeneous materials which focuses on the components of the intended structure. Each one of the components can exhibit isotropic behavior, but the microstructure characteristics of the heterogeneous material result in the anisotropic behavior of the structure. In this research, the general mechanical properties of a 3D anisotropic and heterogeneous Representative Volume Element (RVE), have been determined by applying periodic boundary conditions (PBCs), using the Asymptotic Homogenization Theory (AHT) and strain energy. In order to use the homogenization theory and apply the periodic boundary conditions, the ABAQUS scripting interface (ASI) has been used along with the Python programming language. The results have been compared with those of the Homogeneous Boundary Conditions method, which leads to an overestimation of the effective mechanical properties. According to the results, applying homogenous boundary conditions results in a 33% and 13% increase in the shear moduli G23 and G12, respectively. In polymeric composites, the fibers have linear and brittle behavior, while the resin exhibits a non-linear behavior. Therefore, the nonlinear effects of resin on the mechanical properties of the composite material is studied using a user-defined subroutine in Fortran (USDFLD). The non-linear shear stress-strain behavior of unidirectional composite laminates has been obtained. Results indicate that at arbitrary constant stress as 80 MPa in-plane shear modulus, G12, experienced a 47%, 41% and 31% reduction at the fiber volume fraction of 30%, 50% and 70%, compared to the linear assumption. The results of this study are in good agreement with the analytical and experimental results available in the literature.

Real Time 3D Indoor Tracking System with 3D Model on Mobile Device (모바일 환경에서의 입체모델을 적용한 실시간, 고속 3D 실내 추적시스템)

  • Chung, Wan-Young;Lee, Boon-Giin;Do, Kyeong-Hoon;Kim, Jong-Jin;Kwon, Tae-Ha
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2008.10a
    • /
    • pp.348-353
    • /
    • 2008
  • Despite the increasing popularity of wireless sensor network, indoor positioning using low power IEEE 802.15.4 compliant radio had attracted an interest of many researchers in the last decade. Old fashionable indoor location sensing information has been presented in dull and unpleasant 2D image standard. This paper focused on visualizing high precision 3 dimensional RSSI-based (received signal strength indication) spatial sensing information in an interactive virtual reality on PDA. The developed system operates by capturing and extracting signal strength information at multiple pre-defined reference nodes to provide information in the area of interest, thus updating user's location in 3D indoor virtual map. VRML (Virtual Reality Modeling Language) which specifically developed for 3D objects modeling is utilized to design 3D indoor environment.

  • PDF

An Analysis and Design of Efficient Community Routing Policy for Global Research Network (글로벌연구망을 위한 효율적인 커뮤니티 라우팅 정책의 분석 및 설계)

  • Jang, Hyun-Hee;Park, Jae-Bok;Koh, Kwang-Shin;Kim, Seung-Hae;Cho, Gi-Hwan
    • Journal of Internet Computing and Services
    • /
    • v.10 no.5
    • /
    • pp.1-12
    • /
    • 2009
  • A routing policy based on BGP community routing permits to select a specific route for particular network by making use of user-defined routing policies. Especially, community based routing policy is recently getting a great concern to enhance overall performance in the global research networks which are generally inter-connected large number of different characterized networks. In this paper, we analyze the community routing which has been applied in existing global research networks in the network performance point of view, and catch hold of problems caused by the routing performance in a new global research network. Then, we suggest an effective community routing policy model along with an interconnection architecture of research networks, in order to make correct some wrong routings and resolve an asymmetric routing problem, for a new global research network. Our work is expected to be utilized as an enabling base technology to improve the network performance of future global research networks as well as commercial networks.

  • PDF

Towards efficient sharing of encrypted data in cloud-based mobile social network

  • Sun, Xin;Yao, Yiyang;Xia, Yingjie;Liu, Xuejiao;Chen, Jian;Wang, Zhiqiang
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.10 no.4
    • /
    • pp.1892-1903
    • /
    • 2016
  • Mobile social network is becoming more and more popular with respect to the development and popularity of mobile devices and interpersonal sociality. As the amount of social data increases in a great deal and cloud computing techniques become developed, the architecture of mobile social network is evolved into cloud-based that mobile clients send data to the cloud and make data accessible from clients. The data in the cloud should be stored in a secure fashion to protect user privacy and restrict data sharing defined by users. Ciphertext-policy attribute-based encryption (CP-ABE) is currently considered to be a promising security solution for cloud-based mobile social network to encrypt the sensitive data. However, its ciphertext size and decryption time grow linearly with the attribute numbers in the access structure. In order to reduce the computing overhead held by the mobile devices, in this paper we propose a new Outsourcing decryption and Match-then-decrypt CP-ABE algorithm (OM-CP-ABE) which firstly outsources the computation-intensive bilinear pairing operations to a proxy, and secondly performs the decryption test on the attributes set matching access policy in ciphertexts. The experimental performance assessments show the security strength and efficiency of the proposed solution in terms of computation, communication, and storage. Also, our construction is proven to be replayable choosen-ciphertext attacks (RCCA) secure based on the decisional bilinear Diffie-Hellman (DBDH) assumption in the standard model.