인구 및 세대 구조가 변화면서 점차 대면 관계를 꺼리는 고객의 태도 변화가 정보기술의 발달과 스마트폰의 확산으로 더욱 커지고 있다. 이는 정보기술에 익숙해진 현대 고객들의 소비패턴인 효율성 및 신속성과도 부합되는 것으로, 오프라인 망 중심의 유통회사들이 판매 및 서비스 방식을 언택트로 전환하려는 움직임이 활발해지고 있다. 최근 다양한 분야에서 언택트 서비스가 활성화되고 있지만, 뷰티 제품의 경우 고객의 피부타입 및 상태에 따라 제품 선택이 쉽지 않으므로 비대면을 통해 제품을 추천하기가 쉽지 않다. 이와 관련하여 온라인 뷰티 분야에서 제품 추천을 위한 추천시스템 개발 및 추천 관련 연구들이 수행되었지만, 대부분이 설문조사 방법이나 소셜 데이터를 이용하여 추천 알고리즘을 개발한 연구들이었다. 즉, 고객의 피부타입이나 제품 선호도 등의 실제 사용자 정보를 기반으로 세그먼트를 분류한 연구는 부족하였다. 그리하여, 본 연구에서는 뷰티 분야에서의 언택트 서비스 중의 하나인 모바일 애플리케이션의 고객 정보와 검색 로그 데이터를 기반으로 머신러닝 기법의 K-prototypes 알고리즘을 이용하여 고객 세그먼트를 새롭게 분류하고, 이를 기반으로 언택트 마케팅 전략 방안을 제안한다. 본 연구는 머신러닝 기법을 이용하여 새롭게 고객 세그먼트를 분류함으로써 관련 기존 문헌의 범위를 확장하였다. 더불어, 언택트 서비스라는 새로운 소비 트렌드를 반영하여 고객 세그먼트를 분류하고, 이를 기반으로 뷰티 분야의 언택트 서비스에 활용할 수 있는 구체적인 방안을 제시했다는 실무적 의의가 있다.
공유경제 서비스는 현재 숙박, 자동차, 자전거 등 다양한 분야에서 확산되고 있다. 특히 공유 자전거 서비스는 세계 각지에서 크게 인기를 끌고 있고, 서울시도 2015년 9월부터 '따릉이'라는 공공자전거 서비스를 제공하고 있다. 그러나 사용자의 자전거 이용이 증감함에 따라 지속적으로 대여소 간의 자전거 수 불균형이 발생한다. 본 연구에서는 이러한 문제점을 해결하기 위해 2017년 1년간의 서울시 따릉이 공공자전거 데이터에 소셜 네트워크 분석에서 활용되는 연결 정도 중심성, 근접 중심성, 매개 중심성 그리고 k-코어 분석을 적용하여 시간대별 '따릉이' 이용자들의 이동 패턴을 분석하였다. 그 결과, 연결 정도 중심성은 대중교통 환승과 밀접하게 연계된 곳으로 나타났다. 근접 중심성은 출발과 도착 빈도가 불균형하거나 대중교통 근접성이 미흡한 곳으로 나타났다. 매개 중심성은 출발과 도착의 빈도가 동시에 많이 발생하는 곳을 의미한다. 마지막으로 k-코어 분석 결과, 시간대별로 가장 핵심 집단으로 간주 되는 자치구는 마포구로 나타났다. 따라서 본 연구의 결과는 서울의 자전거 정류장 재배치, 추가 설치 등에 대한 방안을 계획하는 데 기여할 수 있을 것으로 본다.
지휘통제체계는 지휘, 통제, 통신, 컴퓨터, 정보의 5대 요소를 자동화하여 전장을 효율적으로 관리하는 통합 전장 정보체계로 적의 위치, 상황 및 작전 결과를 수집하고 분석하여 모든 제대가 실시간으로 동일한 상황을 파악하며 지휘 결심과 임무 지시를 최적화하는데 중요한 역할을 한다. 그러나 현행 지휘통제체계는 각 군별 전장상황 위주 단일 영역에서의 전장가시화를 시켜주는 구조만으로는 신규 무기체계 도입 때 마다 한계가 발생한다. 지상, 해상, 공중 영역뿐만 아니라 사이버 및 우주 영역까지 확대되는 미래 전장에서 다양한 무기체계들의 유기적인 데이터들이 모여 사용자가 원하는 전장상황을 신속하게 가시화한다면 보다 향상된 지휘통제결심이 가능할 것이다. 이에 본 연구는 미래 지휘통제체계의 적용가능한 가시화 기술을 지도 영역, 상황도 영역, 디스플레이 영역으로 나눠 적용방안을 연구하였다. 이러한 미래 지휘통제체계의 기술 구현은 5G 네트워크와 같은 다양한 데이터 및 통신 수단을 기반으로 하여, 고품질의 다양한 정보를 활용하여 현실적이고 효율적인 전장 상황 인식을 가능하게 하는 초연결 전장가시화가 가능할 것으로 기대한다.
현대인들의 운동, 건강 관심도가 늘어남에 따라 운동에 관련된 정보 및 기기들의 수요가 늘어나고 있으며 잘못된 자세로 운동할 시 신체 불균형과 부상을 초래할 수 있다. 이에 본 연구에서 사용자들의 올바른 운동 자세를 통한 건강증진 및 부상 예방을 위한 자세교정을 목적으로 한다. 시스템의 주기억 장치로는 Arduino Uno R3와 압력 센서, 가속도 센서를 사용하여 개발하였다. 압력 센서는 스쿼트 자세 판별, 가속도 센서는 일반걸음, 팔자걸음, 안짱걸음 3가지의 걸음걸이 판별을 위해 사용되었다. 데이터를 블루투스 모듈로 스마트폰에 전송하고 App에 표시하여 사용자에게 올바른 운동 자세를 안내해준다. 걸음걸이 판별은 발이 벌어진 각도 20˚를 기준으로 진행하였으며, 올바른 스쿼트 자세는 숙련자의 데이터를 기반으로 전족과 후족의 압력 센서 값의 비율을 비교했다. 따라서 걸음걸이 판별 시 약 90%의 정확도와, 스쿼트 자세 시 압력 센서 값의 비율 7:3을 기준 하에 95%의 정확도를 가지는 실험을 기반으로 사용자가 운동 시 App을 통해 실시간으로 확인하여 올바른 자세로 운동을 할 수 있고, 잘못된 자세로 운동을 진행할 때 교정할 수 있도록 안내해주는 시스템을 구축했다.
1990년대 중반에 협업 필터링의 출현으로 인하여 추천시스템에 관련된 연구가 늘어나게 되었다. 협업 필터링의 출현 이후 내용 기반 필터링, 협업 필터링과 내용 기반 필터링이 혼합된 하이브리드 필터링 등 새로운 기법들이 출현함으로써 2000년대에는 추천시스템의 연구가 눈에 띄게 증가하였다. 하지만 현재까지 추천시스템에 관련된 문헌들에 대한 리뷰와 분류가 체계적으로 되어있지 않다. 이와 같은 문제에 대한 해결방안으로써, 본 연구에서는 2001년부터 2010년도까지의 추천시스템에 관련된 문헌들 중 MIS Journal Ranking의 125개의 저널에서 추천시스템(Recommender system, Recommendation system), 협업 필터링(Collaborative Filtering), 내용 기반 필터링(Content based Filtering), 개인화 시스템(Personalized system) 등의 5가지 키워드로 제한하여 조사하였다. 총 37개의 저널에서 논문을 검색하였으며, 검색되어진 논문을 분석한 결과 추천시스템과 관련이 없는 논문을 제외한 총 187개의 논문을 선정하여 분석하였다. 이 연구에서는 그러나 컨퍼런스 논문, 석사, 박사학위 논문, 영어로 작성되지 않은 논문, 완성되지 않은 논문 등은 제외하였다. 본 연구에서는 187개의 논문을 분석하여 2001년부터 2010년까지의 각각의 년도 별 추천시스템의 연구에 대한 동향 분석, Journal별 추천시스템의 게재 분류, 추천시스템 어플리케이션의 사용 분야(책, 문서, 이미지, 영화, 음악, 쇼핑, TV 프로그램, 기타)별 분류 및 분석, 추천시스템에 사용된 데이터마이닝 기술(연관 규칙, 군집화, 의사 결정나무, 최근접 이웃 기법, 링크 분석 기법, 신경망, 회귀분석, 휴리스틱 기법)별 분류 및 분석을 수행하였다. 따라서 본 연구에서 제안한 각각의 분류 및 분석 결과들을 통하여 현재까지 추천시스템의 연구에 대한 연구 동향을 파악 할 수 있었으며, 분석결과를 통해 추천시스템에 관심이 있는 연구자와 전문가에게 미래의 추천시스템의 연구에 대한 가이드라인을 제시 할 수 있을 것이라고 기대한다.
최근 들어 지리 정보 시스템이 발전함에 따라 경로 검색, 주변 정보 검색, 응급 서비스 등을 제공하는 위치 기반 서비스, 텔레매틱스 등의 새로운 응용 서비스 개발에 대한 관심과 연구가 증대되고 있다. 위치 기반 서비스 및 텔레매틱스에서 사용되는 시공간 데이타베이스에서의 사용자의 검색은 시간 축을 현재의 시간으로 고정하고 공간 및 비공간 속성을 검색하기 때문에 시간 축에 대한 검색 범위가 넓을 경우에는 이를 효율적으로 처리하기 어렵다. 이를 해결하기 위하여 이동 객체의 위치 데이타를 요약하는 기법인 스냅샷이 소개되었다. 그러나, 이러한 스냅샷 기법은 저장해야 되는 총간 영역이 넓을 경우 저장 공간이 많이 필요하며 검색에 자주 사용되지 않는 불필요한 영역까지 스냅샷을 생성하므로 저장 공간 및 메모리를 많이 사용하게 된다. 이에 본 논문에서는 기존의 스냅샷 기법의 단점을 극복하기 위하여 이전에 공간 클러스터링을 위해 사용되던 2차원의 공간 해시 알고리즘을 시공간으로 확장한 해시-기반 시공간 클러스터링 알고리즘(H-STCA)과 과거 위치 데이타로부터 이동 객체 경로 탐색을 위한 지식을 추출하기 위해 H-STCA 알고리즘에 근거한 지식 추출 알고리즘을 제안한다. 그리고, 대용량의 이동 객체 데이터에 대한 검색 시간, 저장 구조 생성 시간, 최적 경로 탐색 시간 등에서 H-STCA를 사용한 스냅샷 클러스터링 방법, 기존의 시공간 인덱스 방법, 스냅샷 방법과의 성능평가에 대하여 설명한다. 성능평가 결과로 H-STCA를 사용한 스냅샷 클러스터링 방법은 기존의 시공간 인덱스 방법이나 스냅샷 방법 보다 이동 객체의 개수가 증가하면 할수록 성능 향상이 더욱 큰 것으로 나타났다.
고준위 방사성폐기물 처분 연구 사업이 법률적인 인허가 뿐만이 아니라 일반 국민의 동의를 얻기 위해서는 처분 사업의 안전성에 대한 신뢰성 획득이 중요하며 이를 위해 투명하게 공개될 수 있는 종합 성능 평가 (TSPA, Total System Performance Assessment)의 수행이 필요하다. 본 연구에서는 처분 성능 평가 투명성 제고와 신뢰성 향상을 위한 방안의 하나로 처분 종합 성능 평가에 대한 품질 보증 원칙을 도입하여 평가 관련 전체 업무에 관한 투명성 증진을 꾀하고자 한다. 특히 인터넷을 기반으로 하는 품질 보증 시스템의 개발을 통해 실험을 통해서 얻어지는 평가 입력 자료들 뿐 아니라 평가 수행을 위한 계획 수립과 결과물, 그리고 결과물에 대한 검토 등에 이르기까지 안전성 평가 전 과정에서 투명성이 유지된 데이터들이 높은 신뢰성을 가지고 향후에도 활용될 수 있도록 하였다. 본 연구에서 개발한 Cyber R&D Platform은 인터넷을 기반으로 하는 프로그램으로 안전성 평가를 위한 시나리오 개발 관련 데이터인 FEP 목록과 관련 시나리오 정보, 관련 시나리오 도출 과정 및 평가 체계 등을 체계적으로 구축한 FEAS (FEp to Assessment through Scenario development) 프로그램과 안전성 평가에 필요한 입력 데이터들을 분류, 저장해 놓은 PAID (Performance Assessment Input Data) 프로그램, 그리고 이러한 자료들을 입력할 수 있는 품질 보증 시스템으로 구성되어 있으며 이를 통합 운영함으로써 도출된 데이터들의 신뢰성을 높이고자 하였으며 향후 이해 당사자들이 "처분장에서 생태계에 이르는 핵종들의 이동 경로에 대한 시나리오는 어떠한 것이며, 그 평가 결과들과 평가에 이용되는 실제 데이터들은 어떤 것인지" 에 대해 쉽게 이해할 수 있고 또 관련 자료들이 어떠한 원칙에 따른 검토를 거쳤는지에 관해서도 확인할 수 있게 할 것이다.X>, 중환자실 재원기간은 $2.9\pm0.8일(2\~4)$, 그리고 입원기간은 $21.6\pm14.3일(13\~56)$이었다. 수술 후 평균 CK-MB는 $11.3\pm14.1ng/mL$였다. 수술 후 조기 혈관 개존율은 $100\% (24/24)$였다. 모든 환자에서 완전 추적이 가능하였으며 평균 추적기간은 $20.4\pm15.2개월(5\~43)$이었다. 이 기간 중 사망환자나 흉통이 재발한 환자는 없었다. 걸론: 80세 이상 고령의 환자에서 OPCAB은 수술 후 합병증을 줄이고 좋은 결과를 보여 주었다. 그러므로 고령의 환자에서도 관상동맥우회술의 적응증이 되면 적극적으로 수술을 시행할 필요가 있으며, 수술방법은 OPCAB이 좋을 것으로 생각한다서 실용적 개발의 가능성을 보였다.에 따라 현저한 차이가 있었으며 Dimethoate처리$(30^{\circ}C,\; 0.2\%$액에서 24시간)에 의하여 볍씨의 호흡량이 감소되었다. 9) 산소호흡량과 평균발아소요일수와는 $\gamma=-0.945$로 부의 유의한 상관을 보였는데 산소호흡량이 많은 품종은 평균발아소요일수가 짧은 경향을 보였다. 10) 볍씨의 산소호흡량과 Dimethoate 처리에 의한 볍씨의 발아저해도와는 $\gamma=-0,771$의 높은 부의 상관을 보였으며 산색호흡량이 많은 품종이 발아저해도가 낮고 적은 품종에서는 높았다. 현재까지는 그 활동이 11.2년의 주기성을 보여주지만 그 이전에 있어서는 그 활동이 극히 약화되었을 뿐만 아니라 매우 불규칙하다는 것이 Schneider와 Mass(1975)에 의해 밝혀졌다. 결국 1710년대부터 현재까지 우리나라에 있어서 벼멸구와 흰등멸구의 대발생 연도는 1910년, 1921-23년, 1946, 1967-8년, 1975-7년의 5회가 되며 이들 대발
시대에 따라 변화하는 공원 이용자들의 다양한 활동을 반영하고, 공원의 특성에 따라 미래의 공원설계와 관리 방향성을 제시하기 위해 공원 만족도, 선호도, 이용 후 평가 등 다양한 연구가 수행되어 왔다. 이러한 선행 연구는 주로 설문 조사를 이용하였는데, 설문은 적절한 표본 설정을 통해서 이용자로부터 직접 의견을 청취할 수 있는 좋은 방법이지만, 비용과 시간이 많이 소요되는 단점이 있고, 나아가 빠르게 변화하는 공원의 이용 행태를 파악하기에는 부족하다. 본 연구는 다양한 분야에서 새롭게 활용되고 있는 제3세대 SNS 데이터를 활용하여 공원 유형별 이용 행태, 새로운 이용 행태, 만족도 등을 비교 분석하고 시사점을 논의하였다. 이를 위해서 제3세대 SNS로 대표되는 인스타그램과 구글 콘텐츠를 활용하였다. 인스타그램에서는 공원 이용자가 올린 키워드와 사진을 분류하여 정보를 추출하였으며, 구글에서는 이용 시간과 후기를 비교 분석하였다. 공원 간 비교 연구 결과, 주거지 인접형 공원은 가족과 나들이하거나 공원 내 시설에서 이루어지는 프로그램을 주로 활용하는 것으로 나타났다. 상업지 인접형 공원에서는 상업지역와 연계된 먹는 활동과 공원 내 오픈스페이스와 시설 내 프로그램이 적절하게 이용되는 현상을 확인하였다. 독립형 공원인 한강공원의 경우에는 다양한 운동, 풍경 감상 활동이 빈번히 이루어지고 있었다. 또한 각 공원의 유형별로 동반 유형이 다르게 나타났으며, 새로운 이용 행태가 나타나는 현상을 확인하였다. 이처럼 SNS 데이터는 공원의 이용 행태와 만족요인을 실시간으로 파악할 수 있는 근거를 마련해 주며, 새로운 기술과 정책 도입에 따른 공원의 이용 행태 변화를 파악하여 추후 공원설계와 공원관리의 방향성을 수립하는데 있어 중요한 정보를 제공하는 효과적인 방법으로 활용될 수 있다.
전자상거래 시장의 이용이 보편화 되며 고객들에게 좋은 품질의 물건을 어디서, 얼마나 합리적으로 구매할 수 있는지가 중요해졌다. 이러한 구매 심리의 변화는 방대한 정보 속에서 오히려 고객들의 구매 의사결정을 어렵게 만드는 경향이 있다. 이때 추천 시스템은 고객의 구매 행동을 분석하여 정보 검색에 드는 비용을 줄이고 만족도를 높이는 효과가 있다. 하지만 대부분 추천 시스템은 책이나 영화 등 동종 상품 분류 내에서만 추천이 이뤄진다. 왜냐하면 추천 시스템은 특정 상품에 매긴 구매 평점 데이터를 기반으로 해당 상품 분류 내 유사한 상품에 대한 구매 만족도를 추정하기 때문이다. 그밖에 추천 시스템에서 사용하는 구매 평점의 신뢰성에 대한 문제도 제시되고 있으며 오프라인에선 평점 확보 자체가 어렵다. 이에 본 연구에서는 일련의 문제를 개선하기 위해 RFM 다차원 분석 기법을 활용하여 기존에 사용하던 고객의 구매 평점을 객관적으로 대체할 수 있는 새로운 지표의 활용 가능성을 제안하는 바이다. 실제 기업의 구매 이력 데이터에 해당 지표를 적용해서 검증해본 결과 높게는 약 55%에 해당하는 정확도를 기록했다. 이는 총 4,386종에 달하는 이종 상품들 중 한번도 이용해 본 적 없는 상품을 추천한 결과이기 때문에 검증 결과는 상대적으로 높은 정확도와 활용가치를 의미한다. 그리고 본 연구는 오프라인의 다양한 상품데이터에서도 적용할 수 있는 범용적인 추천 시스템의 가능성을 시사한다. 향후 추가적인 데이터를 확보한다면 제안하는 추천 시스템의 정확도 향상도 기대할 수 있다.
최근 지구관측 위성이 급격히 발전함에 따라 사용자의 수가 증가하고 있다. 이에 따라 지구관측위성위원회(Committee on Earth Observation Satellites, CEOS)에서는 분석준비자료(Analysis Ready Data, ARD)라는 개념을 제안하고 분석준비자료의 요구 조건을 CEOS ARD for Land (CARD4L)로 정의하여 사용자 친화적인 위성영상을 제공하기 위해 노력하고 있다. 분석준비자료에는 육상분석에 불필요한 픽셀이 식별된 마스크(Unusable Data Mask, UDM)가 영상과 함께 제공되어야 한다. UDM의 종류는 구름, 구름 그림자, 지형그림자 등이 있다. 지형그림자는 지형기복이 큰 산악지형에서 발생되며 지형그림자가 생긴 지역은 복사조도가 낮기 때문에 분석 결과에 오류를 야기시킨다. 기존 지형그림자 탐지연구는 지형그림자 보정을 위해 지형그림자 픽셀을 탐지하는데 목적을 두었지만, 이것은 지형보정 기법으로 대체 가능하다. 따라서 지형그림자 탐지 목적을 확장할 필요가 있다. 산림과 농업분석을 목적으로 한 차세대중형위성 4호(CAS500-4)의 활용을 위해 본 연구에서는 지형그림자 탐지 범위를 태양의 영향을 적게 받는 지역까지 확장하였다. 본 논문은 남북한을 대상으로 지형그림자 마스크 생성을 위해 지형그림자 탐지 가능성을 분석하는데 목적이 있다. 지형그림자 탐지를 위해서 태양의 위치, 지표면의 경사와 경사방향을 이용한 음영기복 알고리즘을 사용하였다. 한반도를 촬영한 5 m급 공간해상도의 RapidEye 영상과 10 m급 공간해상도의 Sentinel-2 영상들을 대상으로 참값과 비교하며 최적의 음영기복 임계값을 결정하였다. 결정된 임계값을 사용하여 지형 그림자 탐지를 수행하고 결과를 분석하였다. 정성적 결과로는 전체적으로 참값과의 형상이 유사함을 확인하였다. 정량적 실험결과는 F1 score가 대부분 0.8에서 0.94 사이인 것을 확인하였다. 본 연구 결과를 바탕으로 남북한을 대상으로 자동적인 지형그림자 탐지가 잘 수행됨을 확인하였다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.