Design of Cloud-Based Data Analysis System for Culture Medium Management in Smart Greenhouses (스마트온실 배양액 관리를 위한 클라우드 기반 데이터 분석시스템 설계)
-
- Korean Journal of Environmental Agriculture
- /
- v.37 no.4
- /
- pp.251-259
- /
- 2018
BACKGROUND: Various culture media have been used for hydroponic cultures of horticultural plants under the smart greenhouses with natural and artificial light types. Management of the culture medium for the control of medium amounts and/or necessary components absorbed by plants during the cultivation period is performed with ICT (Information and Communication Technology) and/or IoT (Internet of Things) in a smart farm system. This study was conducted to develop the cloud-based data analysis system for effective management of culture medium applying to hydroponic culture and plant growth in smart greenhouses. METHODS AND RESULTS: Conventional inorganic Yamazaki and organic media derived from agricultural byproducts such as a immature fruit, leaf, or stem were used for hydroponic culture media. Component changes of the solutions according to the growth stage were monitored and plant growth was observed. Red and green lettuce seedlings (Lactuca sativa L.) which developed 2~3 true leaves were considered as plant materials. The seedlings were hydroponically grown in the smart greenhouse with fluorescent and light-emitting diodes (LEDs) lights of
Electronic security system is composed mainly of electronic-information-communication device, so system technology, configuration and management of the electronic security system could be affected by the change of information-communication environment. This study is to propose the future prospect on the development of technique for electronic security system through the analysis of the trend and the actual condition on the development of technique. This study is based on literature study and interview with user and provider of electronic security system, also survey was carried out by system provider and members of security integration company to come up with more practical result. Hybrid DVR technology that has multi-function such as motion detection, target tracking and image identification is expected to be developed. And 'Embedded IP camera' technology that internet server and image identification software are built in. Those technologies could change the configuration and management of CCTV system. Fingerprint identification technology and face identification technology are continually developed to get more reliability, but continual development of surveillance and three-dimension identification technology for more efficient face identification system is needed. As radio identification and tracking function of RFID is appreciated as very useful for access control system, hardware and software of RFID technology is expected to be developed, but government's support for market revitalization is necessary. Behavior pattern identification sensor technology is expected to be developed and could replace passive infrared sensor that cause system error, giving security guard firm confidence for response. The principle of behavior pattern identification is similar to image identification, so those two technology could be integrated with tracking technology and radio identification technology of RFID for total monitoring system. For more efficient electronic security system, middle-ware's role is very important to integrate the technology of electronic security system, this could make possible of installing the integrated security system.
Consumers' overall satisfaction on a specific library use is inferred to be primarily accrued from their performance perception and use satisfaction on the library information service system as recent information technology is being rapidly improved and more libraries are being equipped with advanced information technologies. However, prior research has been conducted only on general library service quality and visitors' satisfaction, leaving the important aspects of visitors' library use and information performance perception. Thus, the objectives of this research are to examine the effect of library use patterns such as general visit for book reading and more professional information search, coupled with service quality, on the library users' performance perception on the information system that in turn, affects library use satisfaction on the same information system. More specifically, this study examines whether library visitors perceive differenltly the information system performance according to their library use patterns such that professional library users may have less positive on information system service due to their higher expectation or more positive perception on it due to variety of information uses and positive judgment on advanced information system. Next, three dimensions of service quality, consisting of interaction, outcome, and physical evidence quality in visitors' library use situations, are hypothesized to affect performance perception on library information system. Thirdly, the performance perception on library information system is hypothesized to influence the system use satisfaction while these two constructs are to affect visitors' overall satisfaction. we develop the following research model in accordance with the above theoretical reasoning. All variables used in this study(General Use Patterns, Professional Use Patterns, Interaction Quality, Outcome Quality, Physical Evidence Quality, Information Performance Perception, Information Use Satisfaction, Overall Satisfaction) were defined operationally based on the underlying prior studies. A survey was conducted with prepared questionnaires to about 400 visitors of a specific university library. Among them, 353 proper questionnaires were finally used for the analyses. Two-step approach was used to test the hypotheses. First, confirmatory factor analysis was conducted to guarantee the validity and reliability of variables. The results showed that all variables had not only convergent and discriminant validity, but also reliability. Then, research model was examined with a structural equation using LISREL 8.30 version. The fitness of the research model was found to be within the acceptable level. The findings of this study are as follows. The professional library use pattern was found to affect the users' performance perception on the library information system while the general library use pattern was not. Second, three dimensions of service quality (interaction, outcome, physical evidence) were found to influence the information system performance respectively while none of them was not to information use satisfaction. Third, library users' performance perception on the information system operation was found to affect the information system use satisfaction, both of which also influence users' overall satisfaction of the library. The findings of this study suggest that contemporary libraries strengthen their advanced information system operation in a way of user orientation and more importantly maximize their visitors' utilization of information system, accompanying proper material and various program development. This study conceptualized the new constructs of library users' performance perception on the information system and information use satisfaction which could better explain library users' overall satisfaction. Thus, furture study related with library service could utilize the constructs of information system performance and satisfaction as well as the variety of library use patterns in the users' viewpoints.
Can the stock market really be predicted? Stock market prediction has attracted much attention from many fields including business, economics, statistics, and mathematics. Early research on stock market prediction was based on random walk theory (RWT) and the efficient market hypothesis (EMH). According to the EMH, stock market are largely driven by new information rather than present and past prices. Since it is unpredictable, stock market will follow a random walk. Even though these theories, Schumaker [2010] asserted that people keep trying to predict the stock market by using artificial intelligence, statistical estimates, and mathematical models. Mathematical approaches include Percolation Methods, Log-Periodic Oscillations and Wavelet Transforms to model future prices. Examples of artificial intelligence approaches that deals with optimization and machine learning are Genetic Algorithms, Support Vector Machines (SVM) and Neural Networks. Statistical approaches typically predicts the future by using past stock market data. Recently, financial engineers have started to predict the stock prices movement pattern by using the SNS data. SNS is the place where peoples opinions and ideas are freely flow and affect others' beliefs on certain things. Through word-of-mouth in SNS, people share product usage experiences, subjective feelings, and commonly accompanying sentiment or mood with others. An increasing number of empirical analyses of sentiment and mood are based on textual collections of public user generated data on the web. The Opinion mining is one domain of the data mining fields extracting public opinions exposed in SNS by utilizing data mining. There have been many studies on the issues of opinion mining from Web sources such as product reviews, forum posts and blogs. In relation to this literatures, we are trying to understand the effects of SNS exposures of firms on stock prices in Korea. Similarly to Bollen et al. [2011], we empirically analyze the impact of SNS exposures on stock return rates. We use Social Metrics by Daum Soft, an SNS big data analysis company in Korea. Social Metrics provides trends and public opinions in Twitter and blogs by using natural language process and analysis tools. It collects the sentences circulated in the Twitter in real time, and breaks down these sentences into the word units and then extracts keywords. In this study, we classify firms' exposures in SNS into two groups: positive and negative. To test the correlation and causation relationship between SNS exposures and stock price returns, we first collect 252 firms' stock prices and KRX100 index in the Korea Stock Exchange (KRX) from May 25, 2012 to September 1, 2012. We also gather the public attitudes (positive, negative) about these firms from Social Metrics over the same period of time. We conduct regression analysis between stock prices and the number of SNS exposures. Having checked the correlation between the two variables, we perform Granger causality test to see the causation direction between the two variables. The research result is that the number of total SNS exposures is positively related with stock market returns. The number of positive mentions of has also positive relationship with stock market returns. Contrarily, the number of negative mentions has negative relationship with stock market returns, but this relationship is statistically not significant. This means that the impact of positive mentions is statistically bigger than the impact of negative mentions. We also investigate whether the impacts are moderated by industry type and firm's size. We find that the SNS exposures impacts are bigger for IT firms than for non-IT firms, and bigger for small sized firms than for large sized firms. The results of Granger causality test shows change of stock price return is caused by SNS exposures, while the causation of the other way round is not significant. Therefore the correlation relationship between SNS exposures and stock prices has uni-direction causality. The more a firm is exposed in SNS, the more is the stock price likely to increase, while stock price changes may not cause more SNS mentions.
In line with the trend of industrial innovation, IoT technology utilized in a variety of fields is emerging as a key element in creation of new business models and the provision of user-friendly services through the combination of big data. The accumulated data from devices with the Internet-of-Things (IoT) is being used in many ways to build a convenience-based smart system as it can provide customized intelligent systems through user environment and pattern analysis. Recently, it has been applied to innovation in the public domain and has been using it for smart city and smart transportation, such as solving traffic and crime problems using CCTV. In particular, it is necessary to comprehensively consider the easiness of securing real-time service data and the stability of security when planning underground services or establishing movement amount control information system to enhance citizens' or commuters' convenience in circumstances with the congestion of public transportation such as subways, urban railways, etc. However, previous studies that utilize image data have limitations in reducing the performance of object detection under private issue and abnormal conditions. The IoT device-based sensor data used in this study is free from private issue because it does not require identification for individuals, and can be effectively utilized to build intelligent public services for unspecified people. Especially, sensor data stored by the IoT device need not be identified to an individual, and can be effectively utilized for constructing intelligent public services for many and unspecified people as data free form private issue. We utilize the IoT-based infrared sensor devices for an intelligent pedestrian tracking system in metro service which many people use on a daily basis and temperature data measured by sensors are therein transmitted in real time. The experimental environment for collecting data detected in real time from sensors was established for the equally-spaced midpoints of 4×4 upper parts in the ceiling of subway entrances where the actual movement amount of passengers is high, and it measured the temperature change for objects entering and leaving the detection spots. The measured data have gone through a preprocessing in which the reference values for 16 different areas are set and the difference values between the temperatures in 16 distinct areas and their reference values per unit of time are calculated. This corresponds to the methodology that maximizes movement within the detection area. In addition, the size of the data was increased by 10 times in order to more sensitively reflect the difference in temperature by area. For example, if the temperature data collected from the sensor at a given time were 28.5℃, the data analysis was conducted by changing the value to 285. As above, the data collected from sensors have the characteristics of time series data and image data with 4×4 resolution. Reflecting the characteristics of the measured, preprocessed data, we finally propose a hybrid algorithm that combines CNN in superior performance for image classification and LSTM, especially suitable for analyzing time series data, as referred to CNN-LSTM (Convolutional Neural Network-Long Short Term Memory). In the study, the CNN-LSTM algorithm is used to predict the number of passing persons in one of 4×4 detection areas. We verified the validation of the proposed model by taking performance comparison with other artificial intelligence algorithms such as Multi-Layer Perceptron (MLP), Long Short Term Memory (LSTM) and RNN-LSTM (Recurrent Neural Network-Long Short Term Memory). As a result of the experiment, proposed CNN-LSTM hybrid model compared to MLP, LSTM and RNN-LSTM has the best predictive performance. By utilizing the proposed devices and models, it is expected various metro services will be provided with no illegal issue about the personal information such as real-time monitoring of public transport facilities and emergency situation response services on the basis of congestion. However, the data have been collected by selecting one side of the entrances as the subject of analysis, and the data collected for a short period of time have been applied to the prediction. There exists the limitation that the verification of application in other environments needs to be carried out. In the future, it is expected that more reliability will be provided for the proposed model if experimental data is sufficiently collected in various environments or if learning data is further configured by measuring data in other sensors.
Electronic commerce, commonly known as e-commerce or eCommerce, has become a major business trend in these days. The amount of trade conducted electronically has grown extraordinarily by developing the Internet technology. Most electronic commerce has being conducted between businesses to customers; therefore, the researches with respect to e-commerce are to find customer's needs, behaviors through statistical methods. However, the statistical researches, mostly based on a questionnaire, are the static researches, They can tell us the dynamic relationships between initial purchasing and repurchasing. Therefore, this study proposes dynamic research model for analyzing the cause of initial purchasing and repurchasing. This paper is based on the System-Dynamic theory, using the powerful simulation model with some restriction, The restrictions are based on the theory TAM(Technology Acceptance Model), PAM, and TPB(Theory of Planned Behavior). This article investigates not only the customer's purchasing and repurchasing behavior by passing of time but also the interactive effects to one another. This research model has six scenarios and three steps for analyzing customer behaviors. The first step is the research of purchasing situations. The second step is the research of repurchasing situations. Finally, the third step is to study the relationship between initial purchasing and repurchasing. The purpose of six scenarios is to find the customer's purchasing patterns according to the environmental changes. We set six variables in these scenarios by (1) changing the number of products; (2) changing the number of contents in on-line shopping malls; (3) having multimedia files or not in the shopping mall web sites; (4) grading on-line communities; (5) changing the qualities of products; (6) changing the customer's degree of confidence on products. First three variables are applied to study customer's purchasing behavior, and the other variables are applied to repurchasing behavior study. Through the simulation study, this paper presents some inter-relational result about customer purchasing behaviors, For example, Active community actions are not the increasing factor of purchasing but the increasing factor of word of mouth effect, Additionally. The higher products' quality, the more word of mouth effects increase. The number of products and contents on the web sites have same influence on people's buying behaviors. All simulation methods in this paper is not only display the result of each scenario but also find how to affect each other. Hence, electronic commerce firm can make more realistic marketing strategy about consumer behavior through this dynamic simulation research. Moreover, dynamic analysis method can predict the results which help the decision of marketing strategy by using the time-line graph. Consequently, this dynamic simulation analysis could be a useful research model to make firm's competitive advantage. However, this simulation model needs more further study. With respect to reality, this simulation model has some limitations. There are some missing factors which affect customer's buying behaviors in this model. The first missing factor is the customer's degree of recognition of brands. The second factor is the degree of customer satisfaction. The third factor is the power of word of mouth in the specific region. Generally, word of mouth affects significantly on a region's culture, even people's buying behaviors. The last missing factor is the user interface environment in the internet or other on-line shopping tools. In order to get more realistic result, these factors might be essential matters to make better research in the future studies.
In this paper, we study the performance improvement of the answer extraction in Question-Answering system by using sentence dependency parsing result. The Question-Answering (QA) system consists of query analysis, which is a method of analyzing the user's query, and answer extraction, which is a method to extract appropriate answers in the document. And various studies have been conducted on two methods. In order to improve the performance of answer extraction, it is necessary to accurately reflect the grammatical information of sentences. In Korean, because word order structure is free and omission of sentence components is frequent, dependency parsing is a good way to analyze Korean syntax. Therefore, in this study, we improved the performance of the answer extraction by adding the features generated by dependency parsing analysis to the inputs of the answer extraction model (Bidirectional LSTM-CRF). The process of generating the dependency graph embedding consists of the steps of generating the dependency graph from the dependency parsing result and learning the embedding of the graph. In this study, we compared the performance of the answer extraction model when inputting basic word features generated without the dependency parsing and the performance of the model when inputting the addition of the Eojeol tag feature and dependency graph embedding feature. Since dependency parsing is performed on a basic unit of an Eojeol, which is a component of sentences separated by a space, the tag information of the Eojeol can be obtained as a result of the dependency parsing. The Eojeol tag feature means the tag information of the Eojeol. The process of generating the dependency graph embedding consists of the steps of generating the dependency graph from the dependency parsing result and learning the embedding of the graph. From the dependency parsing result, a graph is generated from the Eojeol to the node, the dependency between the Eojeol to the edge, and the Eojeol tag to the node label. In this process, an undirected graph is generated or a directed graph is generated according to whether or not the dependency relation direction is considered. To obtain the embedding of the graph, we used Graph2Vec, which is a method of finding the embedding of the graph by the subgraphs constituting a graph. We can specify the maximum path length between nodes in the process of finding subgraphs of a graph. If the maximum path length between nodes is 1, graph embedding is generated only by direct dependency between Eojeol, and graph embedding is generated including indirect dependencies as the maximum path length between nodes becomes larger. In the experiment, the maximum path length between nodes is adjusted differently from 1 to 3 depending on whether direction of dependency is considered or not, and the performance of answer extraction is measured. Experimental results show that both Eojeol tag feature and dependency graph embedding feature improve the performance of answer extraction. In particular, considering the direction of the dependency relation and extracting the dependency graph generated with the maximum path length of 1 in the subgraph extraction process in Graph2Vec as the input of the model, the highest answer extraction performance was shown. As a result of these experiments, we concluded that it is better to take into account the direction of dependence and to consider only the direct connection rather than the indirect dependence between the words. The significance of this study is as follows. First, we improved the performance of answer extraction by adding features using dependency parsing results, taking into account the characteristics of Korean, which is free of word order structure and omission of sentence components. Second, we generated feature of dependency parsing result by learning - based graph embedding method without defining the pattern of dependency between Eojeol. Future research directions are as follows. In this study, the features generated as a result of the dependency parsing are applied only to the answer extraction model in order to grasp the meaning. However, in the future, if the performance is confirmed by applying the features to various natural language processing models such as sentiment analysis or name entity recognition, the validity of the features can be verified more accurately.
The wall shear stress in the vicinity of end-to end anastomoses under steady flow conditions was measured using a flush-mounted hot-film anemometer(FMHFA) probe. The experimental measurements were in good agreement with numerical results except in flow with low Reynolds numbers. The wall shear stress increased proximal to the anastomosis in flow from the Penrose tubing (simulating an artery) to the PTFE: graft. In flow from the PTFE graft to the Penrose tubing, low wall shear stress was observed distal to the anastomosis. Abnormal distributions of wall shear stress in the vicinity of the anastomosis, resulting from the compliance mismatch between the graft and the host artery, might be an important factor of ANFH formation and the graft failure. The present study suggests a correlation between regions of the low wall shear stress and the development of anastomotic neointimal fibrous hyperplasia(ANPH) in end-to-end anastomoses. 30523 T00401030523 ^x Air pressure decay(APD) rate and ultrafiltration rate(UFR) tests were performed on new and saline rinsed dialyzers as well as those roused in patients several times. C-DAK 4000 (Cordis Dow) and CF IS-11 (Baxter Travenol) reused dialyzers obtained from the dialysis clinic were used in the present study. The new dialyzers exhibited a relatively flat APD, whereas saline rinsed and reused dialyzers showed considerable amount of decay. C-DAH dialyzers had a larger APD(11.70
The wall shear stress in the vicinity of end-to end anastomoses under steady flow conditions was measured using a flush-mounted hot-film anemometer(FMHFA) probe. The experimental measurements were in good agreement with numerical results except in flow with low Reynolds numbers. The wall shear stress increased proximal to the anastomosis in flow from the Penrose tubing (simulating an artery) to the PTFE: graft. In flow from the PTFE graft to the Penrose tubing, low wall shear stress was observed distal to the anastomosis. Abnormal distributions of wall shear stress in the vicinity of the anastomosis, resulting from the compliance mismatch between the graft and the host artery, might be an important factor of ANFH formation and the graft failure. The present study suggests a correlation between regions of the low wall shear stress and the development of anastomotic neointimal fibrous hyperplasia(ANPH) in end-to-end anastomoses. 30523 T00401030523 ^x Air pressure decay(APD) rate and ultrafiltration rate(UFR) tests were performed on new and saline rinsed dialyzers as well as those roused in patients several times. C-DAK 4000 (Cordis Dow) and CF IS-11 (Baxter Travenol) reused dialyzers obtained from the dialysis clinic were used in the present study. The new dialyzers exhibited a relatively flat APD, whereas saline rinsed and reused dialyzers showed considerable amount of decay. C-DAH dialyzers had a larger APD(11.70