• 제목/요약/키워드: User Experiences

검색결과 531건 처리시간 0.025초

2023 Survey on User Experience of Artificial Intelligence Software in Radiology by the Korean Society of Radiology

  • Eui Jin Hwang;Ji Eun Park;Kyoung Doo Song;Dong Hyun Yang;Kyung Won Kim;June-Goo Lee;Jung Hyun Yoon;Kyunghwa Han;Dong Hyun Kim;Hwiyoung Kim;Chang Min Park;Radiology Imaging Network of Korea for Clinical Research (RINK-CR)
    • Korean Journal of Radiology
    • /
    • 제25권7호
    • /
    • pp.613-622
    • /
    • 2024
  • Objective: In Korea, radiology has been positioned towards the early adoption of artificial intelligence-based software as medical devices (AI-SaMDs); however, little is known about the current usage, implementation, and future needs of AI-SaMDs. We surveyed the current trends and expectations for AI-SaMDs among members of the Korean Society of Radiology (KSR). Materials and Methods: An anonymous and voluntary online survey was open to all KSR members between April 17 and May 15, 2023. The survey was focused on the experiences of using AI-SaMDs, patterns of usage, levels of satisfaction, and expectations regarding the use of AI-SaMDs, including the roles of the industry, government, and KSR regarding the clinical use of AI-SaMDs. Results: Among the 370 respondents (response rate: 7.7% [370/4792]; 340 board-certified radiologists; 210 from academic institutions), 60.3% (223/370) had experience using AI-SaMDs. The two most common use-case of AI-SaMDs among the respondents were lesion detection (82.1%, 183/223), lesion diagnosis/classification (55.2%, 123/223), with the target imaging modalities being plain radiography (62.3%, 139/223), CT (42.6%, 95/223), mammography (29.1%, 65/223), and MRI (28.7%, 64/223). Most users were satisfied with AI-SaMDs (67.6% [115/170, for improvement of patient management] to 85.1% [189/222, for performance]). Regarding the expansion of clinical applications, most respondents expressed a preference for AI-SaMDs to assist in detection/diagnosis (77.0%, 285/370) and to perform automated measurement/quantification (63.5%, 235/370). Most respondents indicated that future development of AI-SaMDs should focus on improving practice efficiency (81.9%, 303/370) and quality (71.4%, 264/370). Overall, 91.9% of the respondents (340/370) agreed that there is a need for education or guidelines driven by the KSR regarding the use of AI-SaMDs. Conclusion: The penetration rate of AI-SaMDs in clinical practice and the corresponding satisfaction levels were high among members of the KSR. Most AI-SaMDs have been used for lesion detection, diagnosis, and classification. Most respondents requested KSR-driven education or guidelines on the use of AI-SaMDs.

AI 자동 뉴스 추천 서비스 사용자가 인지하는 정보 편향성에 대한 연구: AI 서비스의 윤리 원칙 수립을 중심으로 (A Study on Information Bias Perceived by Users of AI-driven News Recommendation Services: Focusing on the Establishment of Ethical Principles for AI Services)

  • 박민정;채상미
    • 지식경영연구
    • /
    • 제25권3호
    • /
    • pp.47-71
    • /
    • 2024
  • 오늘날 대중화된 AI 뉴스 추천 시스템은 개인화된 뉴스 소비 경험을 제공하여 뉴스 등 다양한 콘텐츠를 사용자가 소비하는 과정에서 효율성을 향상시킨 반면에 특정 관점의 정보만을 제공하여 사용자의 정보 편향성을 심화할 수 있다는 우려가 제기되고 있다. 이는 사용자의 다양한 정보 접근을 제한하는 동시에 특정 사안에 대한 올바른 시각의 형성을 방해하여 필터 버블, 에코 챔버 등의 사회적 문제 현상을 강화하여 사회적 격차 및 정보 불균형을 심화시킬 수 있다. 이에 본 연구는 AI 기반 뉴스 추천 서비스 사용자가 인지하는 정보 편향성에 미치는 영향을 탐색하여 AI 서비스의 윤리 원칙 수립을 위한 기반을 제공하고자 한다. 이를 위하여 AI 뉴스 추천 시스템에 대하여 사용자가 기대하는 책무성, 설명요구권, 선택권, 프라이버시 보호 지원의 윤리적 원칙이 사용자가 인지하는 정보 편향성에 영향을 미치는지 확인하였다. 이를 통해 AI 제공기업의 윤리적 원칙 강화 필요성을 제기하는 동시에 서비스 품질의 향상을 통한 사용자의 신뢰 기반 지속적 사용을 촉진할 수 있을 것으로 예상된다. 또한, AI 서비스를 설계하는 과정에서 우선적으로 고려하여야 하는 윤리 원칙을 본 연구에서 확인함에 따라 본 연구의 결과는 기업의 윤리 원칙 프레임워크 및 내부 정책 수립 및 국내 AI 윤리 가이드라인 등 관련 정책 수립의 토대가 될 것으로 판단된다.

Using the METHONTOLOGY Approach to a Graduation Screen Ontology Development: An Experiential Investigation of the METHONTOLOGY Framework

  • Park, Jin-Soo;Sung, Ki-Moon;Moon, Se-Won
    • Asia pacific journal of information systems
    • /
    • 제20권2호
    • /
    • pp.125-155
    • /
    • 2010
  • Ontologies have been adopted in various business and scientific communities as a key component of the Semantic Web. Despite the increasing importance of ontologies, ontology developers still perceive construction tasks as a challenge. A clearly defined and well-structured methodology can reduce the time required to develop an ontology and increase the probability of success of a project. However, no reliable knowledge-engineering methodology for ontology development currently exists; every methodology has been tailored toward the development of a particular ontology. In this study, we developed a Graduation Screen Ontology (GSO). The graduation screen domain was chosen for the several reasons. First, the graduation screen process is a complicated task requiring a complex reasoning process. Second, GSO may be reused for other universities because the graduation screen process is similar for most universities. Finally, GSO can be built within a given period because the size of the selected domain is reasonable. No standard ontology development methodology exists; thus, one of the existing ontology development methodologies had to be chosen. The most important considerations for selecting the ontology development methodology of GSO included whether it can be applied to a new domain; whether it covers a broader set of development tasks; and whether it gives sufficient explanation of each development task. We evaluated various ontology development methodologies based on the evaluation framework proposed by G$\acute{o}$mez-P$\acute{e}$rez et al. We concluded that METHONTOLOGY was the most applicable to the building of GSO for this study. METHONTOLOGY was derived from the experience of developing Chemical Ontology at the Polytechnic University of Madrid by Fern$\acute{a}$ndez-L$\acute{o}$pez et al. and is regarded as the most mature ontology development methodology. METHONTOLOGY describes a very detailed approach for building an ontology under a centralized development environment at the conceptual level. This methodology consists of three broad processes, with each process containing specific sub-processes: management (scheduling, control, and quality assurance); development (specification, conceptualization, formalization, implementation, and maintenance); and support process (knowledge acquisition, evaluation, documentation, configuration management, and integration). An ontology development language and ontology development tool for GSO construction also had to be selected. We adopted OWL-DL as the ontology development language. OWL was selected because of its computational quality of consistency in checking and classification, which is crucial in developing coherent and useful ontological models for very complex domains. In addition, Protege-OWL was chosen for an ontology development tool because it is supported by METHONTOLOGY and is widely used because of its platform-independent characteristics. Based on the GSO development experience of the researchers, some issues relating to the METHONTOLOGY, OWL-DL, and Prot$\acute{e}$g$\acute{e}$-OWL were identified. We focused on presenting drawbacks of METHONTOLOGY and discussing how each weakness could be addressed. First, METHONTOLOGY insists that domain experts who do not have ontology construction experience can easily build ontologies. However, it is still difficult for these domain experts to develop a sophisticated ontology, especially if they have insufficient background knowledge related to the ontology. Second, METHONTOLOGY does not include a development stage called the "feasibility study." This pre-development stage helps developers ensure not only that a planned ontology is necessary and sufficiently valuable to begin an ontology building project, but also to determine whether the project will be successful. Third, METHONTOLOGY excludes an explanation on the use and integration of existing ontologies. If an additional stage for considering reuse is introduced, developers might share benefits of reuse. Fourth, METHONTOLOGY fails to address the importance of collaboration. This methodology needs to explain the allocation of specific tasks to different developer groups, and how to combine these tasks once specific given jobs are completed. Fifth, METHONTOLOGY fails to suggest the methods and techniques applied in the conceptualization stage sufficiently. Introducing methods of concept extraction from multiple informal sources or methods of identifying relations may enhance the quality of ontologies. Sixth, METHONTOLOGY does not provide an evaluation process to confirm whether WebODE perfectly transforms a conceptual ontology into a formal ontology. It also does not guarantee whether the outcomes of the conceptualization stage are completely reflected in the implementation stage. Seventh, METHONTOLOGY needs to add criteria for user evaluation of the actual use of the constructed ontology under user environments. Eighth, although METHONTOLOGY allows continual knowledge acquisition while working on the ontology development process, consistent updates can be difficult for developers. Ninth, METHONTOLOGY demands that developers complete various documents during the conceptualization stage; thus, it can be considered a heavy methodology. Adopting an agile methodology will result in reinforcing active communication among developers and reducing the burden of documentation completion. Finally, this study concludes with contributions and practical implications. No previous research has addressed issues related to METHONTOLOGY from empirical experiences; this study is an initial attempt. In addition, several lessons learned from the development experience are discussed. This study also affords some insights for ontology methodology researchers who want to design a more advanced ontology development methodology.

심리학적 도구 '5요인 성격 특성'에 의한 소셜 게임 연구: <심즈 소셜> 게임의 분석사례를 중심으로 (Big Five Personality in Discriminating the Groups by the Level of Social Sims)

  • 이동엽
    • 만화애니메이션 연구
    • /
    • 통권29호
    • /
    • pp.129-149
    • /
    • 2012
  • 최근 페이스북이 오픈 플랫폼을 통해 다면시장을 형성함으로써 게임 분야에 소셜이 본격적으로 등장하기 시작하였다. 그중 가장 크게 주목을 받고 있는 분야는 소셜 네트워크를 기반으로 발전한 SNG 분야이다. SNG란 Social Network Game으로 소셜 네트워크 서비스(Social Network Service)의 인맥 관계를 기반으로 제작한 게임을 말한다. SNG의 가장 큰 특징은 게임 실력보다는 네트워크를 통해 이루어진 이웃간의 교류가 게임의 가장 큰 요소로 작용하는 것이다. 이러한 소셜 네트워크 게임의 빠른 성장과 함께 연구되어야할 분야는 인간과 인간, 인간과 게임, 게임과 게임 간의 소통이라 볼 수 있다. 본 연구는 SNG을 플레이하는 유저들의 심리가 소셜을 기반으로 하는 게임 속 캐릭터에 어떠한 영양을 미치는지에 대한 것을 알아보고자 한다. 연구방식은 성격 특성의 상관관계를 검증하는 방식으로 심리학적 성격 5요인 특성(Big Five Factor Model)과 리커트(likert) 척도를 사용하여 유저가 생성한 캐릭터와 성격 5요인 특성을 대입하는 방식을 사용 하였다. 본 논문을 통해 게임을 플레이하는 유저들의 심리상태를 파악하는 방식이 연구되어짐으로써 미래의 소셜 네트워크 게임이 어떠한 방향으로 발전해 나갈 것인지에 대한 준거점 역할을 할 수 있을 것으로 기대한다.

집단지성의 품질, 그 결정요인, 유용성의 관계: 수용자 관점에서 한국의 위키서비스와 Q&A 서비스의 비교 (Relationships between Collective Intelligence Quality, Its Determinants, and Usefulness: A Comparative Study between Wiki Service and Q&A Service in Perspective of Korean Users)

  • 주재훈;이스마틸라 노르마토프
    • Asia pacific journal of information systems
    • /
    • 제22권4호
    • /
    • pp.75-99
    • /
    • 2012
  • Innovation can come from inside or outside organizations. Recently, organizations have begun turning to external knowledge more often, through various forms of collective intelligence (CI) as collaborative platform to solve complex problems. Several factors facilitate this CI utilization phenomenon. First, with the rapid development of Internet and social media, numerous web applications have become available to millions of the Internet users over the past few decades. Web 2.0 and social media have become innovative web applications that provide an environment for human social interaction and collaboration. Second, the diffusion of simple and easy-to-use technologies that enable users to interact and design web applications without programming skills have led to vast, previously unknown amounts of user-generated content. Finally, the Internet has enabled communities to connect and collaborate, creating a virtual world of CI. In this study, web enabled CI is defined as a composed ability of individuals who are acting as a single cognitive unit to achieve common goals, think reasonably, solve problems, make decisions, carry out complex tasks, and develop creative ideas collectively through participation and collaboration on the web. Although CI plays a critical role in organizational innovation and collaboration, the dubious quality of CI is still problem that is difficult to solve. In general, the quality level of content collected from the crowd is lower than that from professionals. Thus, it is important to identify determinants of CI quality and to analyze the relationship between CI quality and its usefulness. However, there is a lack of empirical study on the quality factors of web-enabled CI. There exist a variety of web enabled CI sites such as Threadless, iStockphoto or InnoCentive, Wikipedia, and Youtube. One of the most successful forms of web-enabled CI is the Wikipedia online encyclopedia, accessible all over the world. Another one example is Naver KnowledgeiN, a typical and popular CI site offering question and answer (Q&A) services. It is necessary to study whether or not different types of CI have a different effect on CI quality and its usefulness. Thus, the purpose of this paper is to answer to following research questions: ${\bullet}$ What determinants are important to CI quality? ${\bullet}$ What is the relationship between CI quality factors and the usefulness of web-enabled CI? ${\bullet}$ Does CI type have a moderating effect on the relationship between CI quality, its determinants, and CI usefulness? Online survey using Google Docs with email and Kakao Talk was conducted for collecting data from Wikipedia and Naver KnowledgeiN users. A totoal of 490 valid responses were collected, where users of Wikipedia were 220 while users of Naver KnowledgeiN were 270. Expertise of contributors, community size, and diversity of contributors were identified as core determinants of perceived CI quality. Perceived CI quality has significantly influenced perceived CI usefulness from a user's perspective. For improving CI quality, it is believed that organizations should ensure proper crowd size, facilitate CI contributors' diversity and attract as many expert contributors as possible. Hypotheses that CI type plays a role of moderator were partially supported. First, the relationship between expertise of contributors and perceived CI quality was different according to CI type. The expertise of contributors played a more important role in CI quality in the case of Q&A services such as Knowledge iN compared to wiki services such as Wikipedia. This implies that Q&A service requires more expertise and experiences in particular areas rather than the case of Wiki service to improve service quality. Second, the relationship between community size and perceived CI quality was different according to CI type. The community size has a greater effect on CI quality in case of Wiki service than that of Q&A service. The number of contributors in Wikipeda is important because Wiki is an encyclopedia service which is edited and revised repeatedly from many contributors while the answer given in Naver Knowledge iN can not be corrected by others. Finally, CI quality has a greater effect on its usefulness in case of Wiki service rather than Q&A service. In this paper, we suggested implications for practitioners and theorists. Organizations offering services based on collective intelligence try to improve expertise of contributeros, to increase the number of contributors, and to facilitate participation of various contributors.

  • PDF

구글맵리뷰 텍스트마이닝을 활용한 공원 이용자의 인식 및 평가 - 서울숲, 보라매공원, 올림픽공원을 대상으로 - (Perception and Appraisal of Urban Park Users Using Text Mining of Google Maps Review - Cases of Seoul Forest, Boramae Park, Olympic Park -)

  • 이주경;손용훈
    • 한국조경학회지
    • /
    • 제49권4호
    • /
    • pp.15-29
    • /
    • 2021
  • 본 연구의 목적은 Google Maps에서 제공하는 장소에 대한 리뷰를 활용하여 실제로 공원을 방문한 이용자의 인식과 평가를 파악하는 것이다. 구글맵리뷰는 Social Network Service(SNS)를 통해 장소에 대한 인식과 평가에 관한 정보를 얻는 온라인 리뷰이며, 일반 리뷰어와 구글맵의 회원으로 등록된 지역 가이드의 관점에서 장소에 대한 이해를 볼 수 있는 서비스이다. 본 연구에서는 구글맵리뷰 분석이 공원 관리에 필요한 이용자들의 인식과 평가를 추출하는데 활용될 수 있는지를 살펴보고자 하였다. 서로 다른 공간특징과 시설을 가지는 3개의 공원(서울숲, 보라매공원, 올림픽공원)을 대상으로 파이썬을 활용한 웹 크롤링을 통해서 구글맵리뷰 내용을 수집하였다. 그리고 텍스트 분석을 통해 공원별 주요 키워드 분석과 네트워크 구조에 따른 특성을 분석하고, 이와 함께 구글맵리뷰에서 제공하는 별점 평갓값과 외국인 리뷰 데이터에 대한 분석도 수행했다. 연구 결과, 3개의 공원에서 공통으로 나타나는 특성으로는 이용목적으로 '산책', '자전거', '휴식', '피크닉'이 있었으며, 동반유형으로 '가족', '아이', '애견'이, 인프라로는 '놀이터', '산책로'가 있었다. 공원별 특색을 보면 서울숲은 자연을 기반으로 하는 야외활동이 많이 나타났고 반면, 주차공간 부족과 주말 혼잡은 공원 이용자에게 부정적인 영향을 미치고 있었다. 보라매공원은 수많은 활동을 제공하는 다양한 시설을 갖춘 도시공원의 모습을 가지고 있었다. 리뷰어들은 반려견을 동반하는 이용자 그룹과 그렇지 않은 다른 이용자 그룹 간의 갈등과 공원의 복잡함에 대한 부정적인 측면을 언급했다. 올림픽공원에는 대형 복합시설이 있으며, 커뮤니티, 문화예술공연과 같은 대규모 문화 이벤트가 많이 언급되었고, 레크리에이션 기능이 강조되었다. 구글맵리뷰는 공원에 대한 이용자의 전반적 경험과 이미지에 대한 특징을 파악하는 유용한 자료라고 할 수 있다. 또한, 다른 소셜미디어 데이터와 비교할 때 특히 구글맵리뷰는 공원에 대한 이용자 평갓값과 만족 및 불만족 요인을 이해할 수 있는 데이터를 제공한다.

SNS에서의 개선된 소셜 네트워크 분석 방법 (Improved Social Network Analysis Method in SNS)

  • 손종수;조수환;권경락;정인정
    • 지능정보연구
    • /
    • 제18권4호
    • /
    • pp.117-127
    • /
    • 2012
  • 최근 온라인 소셜 네트워크 서비스(SNS)의 사용자가 크게 늘어나고 있으며 다양한 분야에서 SNS의 사용자 관계 구조 및 메시지를 분석하기 위한 연구를 진행하고 있다. 그러나 대부분의 소셜 네트워크 분석 방법들은 노드 사이의 최단 거리를 기초로 하고 있으므로 계산 시간이 오래 걸린다. 이는 점차 대형화 되어가는 SNS의 데이터를 여러 분야에서 활용하는데 걸림돌이 되고 있다. 이에 따라 본 논문에서는 SNS의 사용자 그래프에서 사용자간 최단거리를 빠르게 찾기 위한 휴리스틱 기반의 최단 경로 탐색 방법을 제안한다. 제안하는 방법은 1) 트리로 표현된 소셜 네트워크에서 시작 노드와 목표 노드를 설정한다. 그리고 2) 만약 목표 노드가 경사 트리의 단말에 있다면 경사 트리가 시작하는 노드를 임시 골 노드로 설정한다. 마지막으로 3) 연결의 차수를 평가값으로 하는 휴리스틱 기반 최단거리 탐색을 수행한다. 이렇게 최단거리를 탐색한 후 매개 중심성 분석(Betweenness Centrality) 및 근접 중심성(Closeness Centrality)를 계산한다. 제안하는 방법을 사용하면 소셜 네트워크 분석에서 가장 많은 시간이 필요한 최단거리 탐색을 빠르게 수행할 수 있으므로 소셜 네트워크 분석의 효율성을 기대할 수 있다. 본 논문에서 제안하는 방법을 검증하기 위하여 약 16만 명으로 구성된 SNS에서의 실제 데이터를 이용하여 매개 중심성 분석과 근접 중심성 분석을 수행하였다. 실험 결과, 제안하는 방법은 전통적 방식에 비하여 매개 중심성, 근접 중심성의 계산 시간이 각각 6.8배, 1.8배 더 빠른 결과를 보였다. 본 논문에서 제안한 방법은 소셜 네트워크 분석의 시간을 향상시켜 여러 분야에서 사회 현상 및 동향을 분석하는데 유용하게 활용될 수 있다.

대학생의 학창경험이 사회 진출에 미치는 영향: 대학생활 활동 로그분석을 중심으로 (School Experiences and the Next Gate Path : An analysis of Univ. Student activity log)

  • 이은주;박도형
    • 지능정보연구
    • /
    • 제26권4호
    • /
    • pp.149-171
    • /
    • 2020
  • 대학생 시기는 실질적으로 직업선택을 해야 하는 시기이다. 우리 사회가 빠르게 고도로 발달하는 만큼, 직업은 다양화, 세분화, 전문화되어 대학생들의 취업 준비기간은 또한 갈수록 길어지고 있다. 본 연구는 대학생들이 학교 내외에서 하는 경험하는 다양한 활동들이 취업에 어떤 영향이 있을지 대학생들의 로그데이터를 중심으로 분석해 보았다. 실험을 위하여 학생들의 다양한 활동을 체계적으로 분류하고 활동 데이터를 6개의 핵심역량(직무전문성강화 역량, 리더십 및 팀웍 역량, 세계화 역량, 직무몰입 역량, 직업탐색 역량, 자율이행역량)으로 구분하였고, 여기서 구분된 6개의 역량 값이 취업여부(취업그룹, 미취업그룹)에 미치는 영향을 분석하였다. 분석 결과 6개의 역량 모두 취업집단과 미취업집단의 수준차이가 유의한 것을 확인할 수 있어 학교에서의 활동은 취업에 유의미함을 유추할 수 있었다. 다음으로 6개의 역량이 취업의 질적성과에 미치는 영향을 분석하기 위하여 6개의 역량수준을 상·하로 나누고, 첫연봉액을 기준으로 6개의 그룹을 만든 후 관계를 확인해 보았는데, 그 결과 6개의 역량 중 세계화역량, 직업탐색역량, 자율이행역량 수준이 높은 학생이 연봉을 기준으로 한 취업성과 또한 높은 것으로 확인되었다. 본 연구의 이론적 공헌은 다음과 같다. 첫 번째, 학창경험으로부터 추출할 수 있는 역량을 인사조직관리분야의 역량과 연결하며, 개인의 경력성공을 위해 대학생으로서 필요한 역량을 직업탐색역량과 자율이행역량을 추가하였다는 점이다. 두 번째, 활동로그의 실데이터 기반으로 각각의 역량을 측정하고 결과변수와 검증을 한 점이다. 세 번째, 양적성과(취업률)뿐만 아니라 질적성과(연봉수준)를 분석한 점이다. 본 연구의 실무적 활용은 다음과 같다. 첫 번째, 대학생들의 경력개발계획 수립 시 가이드가 될 수 있다. 전략이 없거나 균형을 갖추지 못한 또는 과도한 스펙을 쌓기는 지양하고 직업세계와 직무에 대한 분석을 바탕으로 자신의 강점을 표현할 수 있는 취업준비가 필요하다. 두 번째, 학교와 기업, 지자체, 정부 등 대학생들을 위한 행사를 기획하는 담당자는 대학생들이 필요로 하는 경험을 설계할 본 연구에서 제시한 6대 역량을 참고할 수 있다. 이벤트의 수요자인 대학생이 필요한 역량을 키우면서 하면서 각 기관의 목적을 더할 때 수요자와 공급자 모두 만족스러운 결과를 만들 수 있다. 세 번째, 디지털 대전환 시대, 국가의 균형발전을 구상하는 정부의 정책담당자는 대학생들의 호기심과 에너지를 대학생들의 역량개발과 국가의 균형발전을 함께 성취하는 방향으로 정책을 만들 수 있다. 기존에 없던 플랫폼서비스를 시도하고, 기존의 아날로그 상품이나 서비스와 기업문화를 디지털화 하는 데에는 많은 인력이 필요하며 디지털세대인 현 대학생들의 활약은 전 산업에서 촉매가 될 뿐 아니라 성공적인 경력개발을 위한 대학생들에게도 필요한 경험이라 사료된다.

특정직 경호공무원의 전직역량에 대한 보유수준 분석 및 전직지원방안 연구 (A Study on Outplacement Countermeasure and Retention Level Examination Analysis about Outplacement Competency of Special Security Government Official)

  • 김범석
    • 시큐리티연구
    • /
    • 제33호
    • /
    • pp.51-80
    • /
    • 2012
  • 이 연구의 목적은 특정직 경호공무원의 전직 역량에 대한 특정직 경호공무원들의 보유수준 조사를 통한 전직지원방안을 제시하는데 있으며, 이를 위해 특정직 경호공무원 중 전직관련 대상자로서 40대 이상 5급 사무관 이상 전직 유경험자인 전직 성공자와 전직 실패자, 전직 희망자인 전직 예정자 600명을 대상으로 지식역량군의 전문지식, 전직관련 지식, 자기이해, 조직이해, 기술역량군의 직무기술역량, 직무수행기술, 문제해결기술, 혁신기술, 커뮤니케이션기술, 조직관리기술, 위기관리기술, 경력개발기술, 인적네트워크 활용기술, 태도 및 감정역량군의 긍정적 태도, 적극적 태도, 책임감, 직업정신, 헌신적 태도, 친화력, 자기조절능력, 가치 및 윤리역량군의 윤리의식, 도덕성 등 4개 역량군 22개 하위역량의 보유수준에 대한 설문조사를 실시하였다. 최종적으로 유효한 설문 응답자 153명의 4개 역량 군 22개 하위역량 항목에 대한 설문조사 분석결과, 현재 보유수준 값이 4.0이상인 전문지식, 긍정적 태도, 책임감, 윤리의식, 도덕성 역량 등에 있어서는 어느 정도 갖추었다고 생각하고 있으나, 그 외 역량에 대해서는 보통이하 점수로 다소 낮게 나타나, 이들 역량들에 대해서는 아직은 부족하다고 인식하고 있다. 따라서 이러한 역량 강화를 위한 특정직 경호공무원의 성공적인 전직지원방안으로서는 전직에 대한 인식과 개념을 재정립하고 현실을 직시할 수 있도록 눈높이를 낮추어야 하며, 전직에 필요한 역량으로서 다소 부족하다고 느끼고 있는 역량들에 대해서는 평소에 관심을 가지고 적극적인 개발 및 강화 노력이 요구된다. 제도적 차원에서 이러한 전직 역량을 갖출 수 있도록 퇴직 전 중 후 전직 교육훈련 강화 및 현 교육훈련체계 반영, 수요자 중심의 온-오프 상 교육훈련시스템 운영, 학습조직화 등 전직교육훈련 인프라를 구축할 필요성이 있다.

  • PDF

기업의 SNS 노출과 주식 수익률간의 관계 분석 (The Analysis on the Relationship between Firms' Exposures to SNS and Stock Prices in Korea)

  • 김태환;정우진;이상용
    • Asia pacific journal of information systems
    • /
    • 제24권2호
    • /
    • pp.233-253
    • /
    • 2014
  • Can the stock market really be predicted? Stock market prediction has attracted much attention from many fields including business, economics, statistics, and mathematics. Early research on stock market prediction was based on random walk theory (RWT) and the efficient market hypothesis (EMH). According to the EMH, stock market are largely driven by new information rather than present and past prices. Since it is unpredictable, stock market will follow a random walk. Even though these theories, Schumaker [2010] asserted that people keep trying to predict the stock market by using artificial intelligence, statistical estimates, and mathematical models. Mathematical approaches include Percolation Methods, Log-Periodic Oscillations and Wavelet Transforms to model future prices. Examples of artificial intelligence approaches that deals with optimization and machine learning are Genetic Algorithms, Support Vector Machines (SVM) and Neural Networks. Statistical approaches typically predicts the future by using past stock market data. Recently, financial engineers have started to predict the stock prices movement pattern by using the SNS data. SNS is the place where peoples opinions and ideas are freely flow and affect others' beliefs on certain things. Through word-of-mouth in SNS, people share product usage experiences, subjective feelings, and commonly accompanying sentiment or mood with others. An increasing number of empirical analyses of sentiment and mood are based on textual collections of public user generated data on the web. The Opinion mining is one domain of the data mining fields extracting public opinions exposed in SNS by utilizing data mining. There have been many studies on the issues of opinion mining from Web sources such as product reviews, forum posts and blogs. In relation to this literatures, we are trying to understand the effects of SNS exposures of firms on stock prices in Korea. Similarly to Bollen et al. [2011], we empirically analyze the impact of SNS exposures on stock return rates. We use Social Metrics by Daum Soft, an SNS big data analysis company in Korea. Social Metrics provides trends and public opinions in Twitter and blogs by using natural language process and analysis tools. It collects the sentences circulated in the Twitter in real time, and breaks down these sentences into the word units and then extracts keywords. In this study, we classify firms' exposures in SNS into two groups: positive and negative. To test the correlation and causation relationship between SNS exposures and stock price returns, we first collect 252 firms' stock prices and KRX100 index in the Korea Stock Exchange (KRX) from May 25, 2012 to September 1, 2012. We also gather the public attitudes (positive, negative) about these firms from Social Metrics over the same period of time. We conduct regression analysis between stock prices and the number of SNS exposures. Having checked the correlation between the two variables, we perform Granger causality test to see the causation direction between the two variables. The research result is that the number of total SNS exposures is positively related with stock market returns. The number of positive mentions of has also positive relationship with stock market returns. Contrarily, the number of negative mentions has negative relationship with stock market returns, but this relationship is statistically not significant. This means that the impact of positive mentions is statistically bigger than the impact of negative mentions. We also investigate whether the impacts are moderated by industry type and firm's size. We find that the SNS exposures impacts are bigger for IT firms than for non-IT firms, and bigger for small sized firms than for large sized firms. The results of Granger causality test shows change of stock price return is caused by SNS exposures, while the causation of the other way round is not significant. Therefore the correlation relationship between SNS exposures and stock prices has uni-direction causality. The more a firm is exposed in SNS, the more is the stock price likely to increase, while stock price changes may not cause more SNS mentions.