• 제목/요약/키워드: Used Blade

검색결과 1,085건 처리시간 0.027초

광섬유 격자 센서와 빔 커플러를 사용한 회전중인 블레이드의 변형률 측정 방법 (On-line Strain Measurement of Rotating Blade Using Fiber Bragg Grating Sensors and Beam Coupler)

  • 이인재;이종민;이상배;황요하
    • 한국소음진동공학회논문집
    • /
    • 제16권11호
    • /
    • pp.1172-1178
    • /
    • 2006
  • Measurement of blade strain with sensors directly installed on the blade has one critical issue, how to send the sensor signal to the ground. Strain-gauges have been dominantly used to directly measure stress of a blade and either a slip ring or a telemetry system has to be used to send measured signal to the ground. However, both systems have many inherent problems and sometimes very severe limitations to be practically used. In this paper, new on-line strain monitoring method using. FBG(Fiber Bragg Grating) sensors and a beam coupler is introduced. Measurement of rotor stress using FBG sensors is nothing new, but unlike other system which installs all necessary instruments on the rotor and use telemetry system to send data to the ground, this system makes use of light's unique characteristic - light travels through space. In this new approach, single optical fiber with many FBG sensors is installed on the blade and all other necessary instruments can be installed at ground thereby giving tremendous advantages over slip ring or telemetry system. A reference sensor is also introduced to compensate the beam coupler's transmission loss change due to rotation. The suggested system's good performance is demonstrated with experiments.

차세대 터보프롭 항공기용 복합재 최신 프로펠러 설계 및 해석 (The Design and Analysis of Composite Advanced Propeller Blade for Next Generation Turboprop Aircraft)

  • 최원;김광해;이원중
    • 한국유체기계학회 논문집
    • /
    • 제15권6호
    • /
    • pp.11-17
    • /
    • 2012
  • The one way fluid structure interaction analysis on advanced propeller blade for next generation turboprop aircraft. HS1 airfoil series are selected as a advanced propeller blade airfoil. Adkins method is used for aerodynamic design and performance analysis with respect to the design point. Adkins method is based on the vortex-blade element theory which design the propeller to satisfy the condition for minimum energy loss. propeller geometry is generated by varying chord length and pitch angle at design point. Blade sweep is designed based on the design mach number and target propulsion efficiency. The aerodynamic characteristics of the designed Advanced propeller were verified by CFD(Computational Fluid Dynamic) and showed the enhanced performance than the conventional propeller. The skin-foam sandwich structural type is adopted for blade. The high stiffness, strength carbon/epoxy composite material is used for the skin and PMI(Polymethacrylimide) is used for the foam. Aerodynamic load is calculated by computational fluid dynamics. Linear static stress analysis is performed by finite element analysis code MSC.NASTRAN in order to investigate the structural safety. The result of structural analysis showed that the design has sufficient structural safety. It was concluded that structural safety assessment should incorporate the off-design points.

중형항공기급 고효율 경량화 복합재 프로펠러 블레이드 설계 연구 (Design on High Efficiency and Light Composite Propeller Blade of Regional Aircraft)

  • 공창덕;이경선;박현범;최원
    • 한국추진공학회:학술대회논문집
    • /
    • 한국추진공학회 2012년도 제38회 춘계학술대회논문집
    • /
    • pp.253-258
    • /
    • 2012
  • 본 연구에서는 한국의 차세대 중형항공기에 사용될 터보프롭 항공기용 고효율 복합재 프로펠러 블레이드의 설계를 수행하였다. 와류 이론과 블레이드 깃 요소 이론을 활용하여 기본 공력설계 및 성능 해석을 수행하였고 공력설계 결과는 상업용 전산유체해석 프로그램인 ANSYS를 이용한 해석을 통해 확인하였다. 프로펠러 구조 설계 시 카본/에폭시 복합재료가 적용되었으며, 경량화와 구조 안정성 개선을 위하여 스킨-스파-폼 샌드위치 구조 형식를 채택하였다. 제안된 프로펠러 블레이드는 공력 및 구조 해석과 시제품 프로펠러 블레이드의 구조 시험을 통하여 높은 효율과 안전한 구조임이 검토되었다.

  • PDF

베인과 블레이드 사이의 상대위치 변화에 따른 터빈 블레이드 표면에서의 열/물질전달 특성 (Effect of Relative Position of Vane and Blade on Heat/Mass Transfer Characteristics on Stationary Turbine Blade Surface)

  • 이동호;조형희
    • 유체기계공업학회:학술대회논문집
    • /
    • 유체기계공업학회 2004년도 유체기계 연구개발 발표회 논문집
    • /
    • pp.140-150
    • /
    • 2004
  • In this study, the effect of relative position of the blade for the fixed vane has been investigated on blade surface heat transfer. The experiments were conducted in a low speed stationary annular cascade, and heat transfer of blade was examined for six positions within a pitch. Turbine test section has one stage composed of sixteen guide vanes and blades. The chord length of the tested blade is 150 mm and the mean tip clearance of the blade having flat tip is about $2.5\%$ of the blade chord. For the detailed mass transfer measurements on the blade surfaces, a naphthalene sublimation technique was used. The inlet flow Reynolds number is fixed to $1.5{\times}10^5$. Complex heat transfer characteristics are observed on the blade surface due to various flow characteristics, such as separation bubble, relaminarization, transition to turbulence and leakage vortices. The distributions of velocity and turbulence intensity change significantly with the relative position due to the blockage effect of the blade. This causes the variation of heat transfer patterns on the blade surface. The results show that the flow near the leading edge get highly disturbed and deflected toward the either side of the blade when the blade leading edge is positioned close to the trailing edge of the vane. Therefore, separation bubble disappears on the pressure side and overall heat transfer on the relaminarization region is increased. But, due to reduced tip gap flow at the upstream region, the effect of leakage flow on the upstream region of the blade surface is weakened. Thus, the heat transfer characteristics significantly change with the blade positions.

  • PDF

NASA Rotor 37 익형의 스윕각 최적화 (Optimization of Blade Sweep of NASA Rotor 37)

  • 장춘만;리핑;김광용
    • 대한기계학회논문집B
    • /
    • 제30권7호
    • /
    • pp.622-629
    • /
    • 2006
  • The shape optimization of blade sweep in a transonic axial compressor rotor of NASA Rotor 37 has been performed using response surface method and the three-dimensional Wavier-Stokes analysis. Two shape variables of the rotor blade, which are used to define the rotor sweep, are introduced to increase the adiabatic efficiency of the compressor. Throughout the optimization, optimal shape having a backward sweep is obtained. Adiabatic efficiency, which is the objective function of the present optimization, is successfully increased. Separation line due to the interference between a shock and surface boundary layer on the blade suction surface is moved downstream for the optimized blade compared to the reference one. The increase in adiabatic efficiency for the optimized blade is caused by suppression of the separation due to a shock on the blade suction surface.

단결정 압전작동기를 사용한 능동 뒷전플랩 블레이드의 진동하중 감소해석 (Vibratory Loads Reduction Analysis of Active Trailing-edge Flap Blades Using Single Crystal Piezoelectric Actuators)

  • 박재상;김태성;신상준
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2007년도 추계학술대회논문집
    • /
    • pp.326-331
    • /
    • 2007
  • This paper conducts a vibratory loads reduction analysis of an Advanced Active Trailing-edge Flap (AATF) blade utilizing single crystal piezoelectric actuators. For an AATF blade, a new L-L piezostack actuator using single crystal PMN-PT materials is designed. The AATF blade is designed to have similar characteristics to the Advanced Active Twist Rotor (AATR) blade. The active trailingedge flap is assumed to be 20% of the blade span and 15% of the chord, located at 75% of the blade radius. In order to conduct the vibratory loads reduction analysis of the AATF blade in forward flight, DYMORE, a multi-body dynamics analysis code, is used. The simulation result shows that the hub vibratory loads may be reduced by approximately 89% even with a much lower input-voltage when comparing with the other active rotor systems.

  • PDF

Upwind형 수평축 풍력발전기의 타워 영향에 의한 블레이드 공력 성능 및 하중 변화에 대한 고찰 (Effect of interaction between blade and tower in upwind type HAWT on blade aerodynamic performance and load)

  • 김호건;신형기;박지웅;이수갑
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 한국신재생에너지학회 2006년도 추계학술대회
    • /
    • pp.261-264
    • /
    • 2006
  • This paper describes the effects to wind turbine blade aerodynamics due to interaction between blade and tower on upwind type HAWT. In order to analyze effects of blade-tower interact ion, the analyst s program WINFAS which is based on VLM(Vortex Lattice Method), Free wake and FVE model is used. In this study, the changes of wind turbine blade aerodynamics caused by blade-tower interact ion are Investigated with various parameters windshear, yaw error, TSR and tower diameter.

  • PDF

축류압축기 블레이드의 표면조도가 성능에 미치는 영향 (Effect of Surface Roughness on Performance of Axial Compressor Blade)

  • 압두스사마드;김광용
    • 한국유체기계학회 논문집
    • /
    • 제10권3호
    • /
    • pp.9-16
    • /
    • 2007
  • Deterioration of surface of turbomachinery blades occurs in course of time due to many factors and hence reduces the performance of the machine. In this paper, the effects of surface roughness of transonic axial compressor blade on performance are studied considering a reference blade and a shape distorted (optimized) blade. Optimal blade is designed considering sweep and lean. Baldwin-Lomax turbulence model is used for flow field analysis and Cebeci-Smith roughness model is formulated for roughness modeling. It is found that, as the surface roughness increases, adiabatic efficiency, total temperature ratio and total pressure ratio decrease while Mach number increases. Performance deterioration is more severe in case of distorted blade as compared to reference blade.

축류형 이중 블레이드 팬의 공기 유동 특성에 관한 실험적 연구 (Experimental Study on Air Flow Characteristics of Axial Dual-blade Fan)

  • 김해지;이용민
    • 한국기계가공학회지
    • /
    • 제13권4호
    • /
    • pp.113-120
    • /
    • 2014
  • To ventilate indoor spaces, axial single-blade fans are widely used in various areas, such as schools, houses, offices, and restaurants. Recently, axial single-blade fans were developed to realize energy efficiency and noise reduction improvements. Here, an experimental study of the air flow characteristics of an axial dual-blade fan is conducted. The characteristics of the axial dual-blade fan were tested via an air flow analysis and with prototypes. For the performance of the fan, the flow rate, power consumption, and noise were evaluated. The result showed that the axial dual-blade fan uses less power and produces less noise in comparison with an axial single-blade fan.

Aerodynamic Analysis of Helicopter Rotor by Using a Time-Domain Panel Method

  • Kim, J.K.;Lee, S.W.;Cho, J.S.
    • 한국추진공학회:학술대회논문집
    • /
    • 한국추진공학회 2008년 영문 학술대회
    • /
    • pp.638-642
    • /
    • 2008
  • Computational methods based on the solution of the flow model are widely used for the analysis of lowspeed, inviscid, attached-flow problems. Most of such methods are based on the implementation of the internal Dirichlet boundary condition. In this paper, the time-domain panel method uses the piecewise constant source and doublet singularities. The present method utilizes the time-stepping loop to simulate the unsteady motion of the rotary wing blade. The wake geometry is calculated as part of the solution with no special treatment. To validate the results of aerodynamic characteristics, the typical blade was chosen such as, Caradonna-Tung blade and present results were compared with the experimental data and the other numerical results in the single blade condition and two blade condition. This isolated rotor blade model consisted of a two bladed rotor with untwisted, rectangular planform blade. Computed flow-field solutions were presented for various section of the blade in the hovering mode.

  • PDF