• Title/Summary/Keyword: Urban Structure and System

Search Result 616, Processing Time 0.026 seconds

Experimental study on seismic behavior of frame structures composed of concrete encased columns with L-shaped steel section and steel beams

  • Zeng, Lei;Ren, Wenting;Zou, Zhengtao;Chen, Yiguang;Xie, Wei;Li, Xianjie
    • Earthquakes and Structures
    • /
    • v.16 no.1
    • /
    • pp.97-107
    • /
    • 2019
  • The frame structures investigated in this paper is composed of Concrete encased columns with L-shaped steel section and steel beams. The seismic behavior of this structural system is studied through experimental and numerical studies. A 2-bay, 3-story and 1/3 scaled frame specimen is tested under constant axial loading and cyclic lateral loading applied on the column top. The load-displacement hysteretic loops, ductility, energy dissipation, stiffness and strength degradation are investigated. A typical failure mode is observed in the test, and the experimental results show that this type of framed structure exhibit a high strength with good ductility and energy dissipation capacity. Furthermore, finite element analysis software Perform-3D was conducted to simulate the behavior of the frame. The calculating results agreed with the test ones well. Further analysis is conducted to investigate the effects of parameters including concrete strength, column axial compressive force and steel ratio on the seismic performance indexes, such as the elastic stiffness, the maximum strength, the ductility coefficient, the strength and stiffness degradation, and the equivalent viscous damping ratio. It can be concluded that with the axial compression ratio increasing, the load carrying capacity and ductility decreased. The load carrying capacity and ductility increased when increasing the steel ratio. Increasing the concrete grade can improve the ultimate bearing capacity of the structure, but the ductility of structure decreases slightly.

On the Supplementary Study on DSM-Based Interface Requirements through Analysis of the Operation Scenario of the Urban Subway Logistics System

  • Hwang, Sunwoo;Kim, Joouk;Park, Jaemin;Lee, Sangmin;Kim, Youngmin
    • International Journal of Internet, Broadcasting and Communication
    • /
    • v.14 no.1
    • /
    • pp.152-161
    • /
    • 2022
  • Recently, it is recognized as a high-cost and inefficient logistics system that increases traffic congestion and environmental problems due to an increase in traffic volume due to the activation of the online market. In order to solve inefficient problems such as unavoidable traffic congestion and environmental problems caused by the increase in traffic volume, it is necessary to develop a freight transport system technology using the existing urban railway infrastructure and freight-only urban railway. The urban subway logistics system is a logistics system that requires a combination of various technologies to solve the nationwide demand for urban logistics and road traffic problems. This paper recognized the existing traffic congestion and environmental pollution of road traffic as problems, and supplemented the contact point requirements presented above by identifying the sub-systems constituting the target system and supplementary points for each part-level contact point. In this study, as a complex system operated for one purpose by grafting various technologies, a plan is required to secure the reliability and safety of operation from various viewpoints. The results of this study can contribute to the initial configuration and basic data to solve the interface bottleneck of the urban subway logistics system to be promoted in the future.

Analyzing the Socio-Ecological System of Bees to Suggest Strategies for Green Space Planning to Promote Urban Beekeeping (꿀벌의 사회생태시스템 분석을 통한 도시 양봉 활성화 녹지 계획 전략 제시)

  • Choi, Hojun;Kim, Min;Chon, Jinhyung
    • Journal of the Korean Institute of Landscape Architecture
    • /
    • v.52 no.1
    • /
    • pp.46-58
    • /
    • 2024
  • Pollinators are organisms that carry out the pollination process of plants and include Hymenoptera, Lepidoptera, Diptera, and Coleoptera. Among them, bees not only pollinate plants but also improve urban green spaces damaged by land use changes, providing a habitat and food for birds and insects. Today, however, the number of pollinating plants is decreasing due to issues such as early flowering due to climate change, fragmentation of green spaces due to urbanization, and pesticide use, which in turn leads to a decline in bee populations. The decline of bee populations directly translates into problems, such as reduced biodiversity in cities and decreased food production. Urban beekeeping has been proposed as a strategy to address the decline of bee populations. However, there is a problem asurban beekeeping strategies are proposed without considering the complex structure of the socio-ecological system consisting of bees foraging and pollination activities and are therefore unsustainable. Therefore, this study aims to analyze the socio-ecological system of honeybees, which are pollinators, structurally using system thinking and propose a green space planning strategy to revitalize urban beekeeping. For this study, previous studies that centered on the social and ecological system of bees in cities were collected and reviewed to establish the system area and derive the main variables for creating a causal loop diagram. Second, the ecological structure of bees' foraging and pollination activities and the structure of bees' ecological system in the city were analyzed, as was the social-ecological system structure of urban beekeeping by creating an individual causal loop diagram. Finally, the socio-ecological system structure of honey bees was analyzed from a holistic perspective through the creation of an integrated causal loop diagram. Citizen participation programs, local government investment, and the creation of urban parks and green spaces in idle spaces were suggestedas green space planning strategies to revitalize urban beekeeping. The results of this study differ from previous studies in that the ecological structure of bees and the social structure of urban beekeeping were analyzed from a holistic perspective using systems thinking to propose strategies, policy recommendations, and implications for introducing sustainable urban beekeeping.

Profiling Total Viable Bacteria in a Hemodialysis Water Treatment System

  • Chen, Lihua;Zhu, Xuan;Zhang, Menglu;Wang, Yuxin;Lv, Tianyu;Zhang, Shenghua;Yu, Xin
    • Journal of Microbiology and Biotechnology
    • /
    • v.27 no.5
    • /
    • pp.995-1004
    • /
    • 2017
  • Culture-dependent methods, such as heterotrophic plate counting (HPC), are usually applied to evaluate the bacteriological quality of hemodialysis water. However, these methods cannot detect the uncultured or viable but non-culturable (VBNC) bacteria, both of which may be quantitatively predominant throughout the hemodialysis water treatment system. Therefore, propidium monoazide (PMA)-qPCR associated with HPC was used together to profile the distribution of the total viable bacteria in such a system. Moreover, high-throughput sequencing of 16S rRNA gene amplicons was utilized to analyze the microbial community structure and diversity. The HPC results indicated that the total bacterial counts conformed to the standards, yet the bacteria amounts were abruptly enhanced after carbon filter treatment. Nevertheless, the bacterial counts detected by PMA-qPCR, with the highest levels of $2.14{\times}10^7copies/100ml$ in softener water, were much higher than the corresponding HPC results, which demonstrated the occurrence of numerous uncultured or VBNC bacteria among the entire system before reverse osmosis (RO). In addition, the microbial community structure was very different and the diversity was enhanced after the carbon filter. Although the diversity was minimized after RO treatment, pathogens such as Escherichia could still be detected in the RO effluent. In general, both the amounts of bacteria and the complexity of microbial community in the hemodialysis water treatment system revealed by molecular approaches were much higher than by traditional method. These results suggested the higher health risk potential for hemodialysis patients from the up-to-standard water. The treatment process could also be optimized, based on the results of this study.

Control strategy for the substructuring testing systems to simulate soil-structure interaction

  • Guo, Jun;Tang, Zhenyun;Chen, Shicai;Li, Zhenbao
    • Smart Structures and Systems
    • /
    • v.18 no.6
    • /
    • pp.1169-1188
    • /
    • 2016
  • Real-time substructuring techniques are currently an advanced experimental method for testing large size specimens in the laboratory. In dynamic substructuring, the whole tested system is split into two linked parts, the part of particular interest or nonlinearity, which is tested physically, and the remanding part which is tested numerically. To achieve near-perfect synchronization of the interface response between the physical specimen and the numerical model, a good controller is needed to compensate for transfer system dynamics, nonlinearities, uncertainties and time-varying parameters within the physical substructures. This paper presents the substructuring approach and control performance of the linear and the adaptive controllers for testing the dynamic characteristics of soil-structure-interaction system (SSI). This is difficult to emulate as an entire system in the laboratory because of the size and power supply limitations of the experimental facilities. A modified linear substructuring controller (MLSC) is proposed to replace the linear substructuring controller (LSC).The MLSC doesn't require the accurate mathematical model of the physical structure that is required by the LSC. The effects of parameter identification errors of physical structure and the shaking table on the control performance of the MLSC are analysed. An adaptive controller was designed to compensate for the errors from the simplification of the physical model in the MLSC, and from parameter identification errors. Comparative simulation and experimental tests were then performed to evaluate the performance of the MLSC and the adaptive controller.

An integrated optimal design of energy dissipation structures under wind loads considering SSI effect

  • Zhao, Xuefei;Jiang, Han;Wang, Shuguang
    • Wind and Structures
    • /
    • v.29 no.2
    • /
    • pp.99-110
    • /
    • 2019
  • This paper provides a simple numerical method to determine the optimal parameters of tuned mass damper (TMD) and viscoelastic dampers (VEDs) in frame structure for wind vibration control considering the soil-structure interation (SSI) effect in frequency domain. Firstly, the numerical model of frame structure equipped with TMD and VEDs considering SSI effect is established in frequency domain. Then, the genetic algorithm (GA) is applied to obtain the optimal parameters of VEDs and TMD. The optimization process is demonstrated by a 20-storey frame structure supported by pile group for different soil conditions. Two wind resistant systems are considered in the analysis, the Structure-TMD system and the Structure-TMD-VEDs system. The example proves that this method can quickly determine the optimal parameters of energy dissipation devices compared with the traditional finite element method, thus is practically valuable.

System Structure and Reliability Optimization of VVVF Urban Transit Brake System Through Cost Function Construction (비용함수를 이용한 VVVF 전동차 제동장치의 시스템 구조 및 신뢰도 최적화)

  • Kim, Se-Hoon;Kim, Hyun-Jung;Bae, Chul-Ho;Lee, Jung-Hwan;Lee, Ho-Yong;Suh, Myung-Won
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.15 no.3
    • /
    • pp.63-71
    • /
    • 2007
  • During the design phase of a product, reliability and design engineers are called upon to evaluate the reliability of the system, The question of how to meet target reliability for the system arises when estimated reliability or cost is inadequate. This then becomes a problem of reliability allocation and system structure design. This study proposes the optimization methodology to achieve target reliability with minimum cost through construction of the cost function of system. In cost function, total cost means the sum of initial cost, repair cost and maintenance cost. This study constructs optimization problem about system structure design and reliability allocation using cost function. This problem constructed is solved by Multi-island Genetic Algorithm(MIGA), and applies to urban transit brake system. Current brake system of the urban transit is series system. Series system is the simplest and perhaps one of the most common system, but it demands high reliability and maintenance cost because all components must be operating to ensure system operation. Thus this study makes a comparative study by applying k-out-of-n system to brake system. This methodology presented can be a great tool for aiding reliability and design engineers in their decision-makings.

Application of GML and X3D to 3D Urban Data Modeling: A Practical Approach

  • Kim, Hak-Hoon;Lee, Ki-Won
    • Korean Journal of Remote Sensing
    • /
    • v.23 no.1
    • /
    • pp.43-53
    • /
    • 2007
  • In this study, two standard specifications such as GML (Geography Markup Language) from OGC (Open Geo-spatial Consortium, Inc.) and X3D (extensible 3D) from Web3D consortium were dealt with for a web-based 3D urban application without using commercialized tools. In the first step of this study, DEM (Digital Elevation Model) and 3D GIS data sets were converted to GML structure with attribute schema. Then, these GML elements were projected onto a common coordinate system, and they were converted to the X3D format for visualization on web browser. In this work, a 3D urban data model, as a simple framework model, is extended to a framework model having further detailed information, depending upon application levels. Conclusively, this study is to demonstrate for practical uses of GML and X3D in 3D urban application and this approach can be applied to other application domains regarding system integrators and data sharing communities on distributed environments.

A Study on the Color Management System for the Holistic Improvement of Urban Landscape (도시경관의 통합적 개선을 위한 색채관리 제도 연구)

  • 김대수;조정송
    • Journal of the Korean Institute of Landscape Architecture
    • /
    • v.31 no.4
    • /
    • pp.25-38
    • /
    • 2003
  • The main problems of disordered and congested urban landscape are due to the lack of holistic management that can control various elements of forming a city. Especially, the color of urban landscape is problematic because it is related to individual and social characteristics as well as to physical characteristics. Therefore, temporary expedients that can solve only visualized problems can not be a proper solution for color problems of urban landscape. This study originated from the question about why the color of disordered and congested urban landscape has not been improved. This study aims at directly improving the urban environmental color by finding out what the actual problems related to color are, and what the solutions would be. The goal of this study is to find a holistic systematic problem-solving method. Problems of urban environmental color are identified from both literature review and questionnaires to the expert group, such as environmental planning, design group, and the landscape executive group. Through mapping of relationships among these problems, the intellectual map was made to layout the structures of problems. Based on this method, the structures of problems of urban environmental color were classified into 5 categories: 1) the items related to the administrative structure, 2) the items related to the color management goal and system, 3) the items related to the color planning and design phase, 4) the items related to the color consulting committee, and 5) the items related to the present state of color use. Thus, in order to solve the color problem in urban landscape, practical strategy is strongly required. It is not a temporary expedient but a holistic approach. The solution for the problems of urban environmental color could be divided into 6 types; ‘regulations amendment’,‘color standard amendment’,‘color management plan’,‘color education’, and ‘advertisement for the goal of color management’. Regulations amendment among these types was proposed as the most effective method due to the close relationship with problem categories. Thus, as the solution for the problems of urban environmental color, the ‘color management system’ was suggested. Detailed contents the suggested color management system were divided into three parts; 1) legislation by regulations, ordinance and acts, 2) management by controling the level of guidelines, and 3) the standards for execution of this system.

Structural system reliability-based design optimization considering fatigue limit state

  • Nophi Ian D. Biton;Young-Joo Lee
    • Smart Structures and Systems
    • /
    • v.33 no.3
    • /
    • pp.177-188
    • /
    • 2024
  • The fatigue-induced sequential failure of a structure having structural redundancy requires system-level analysis to account for stress redistribution. System reliability-based design optimization (SRBDO) for preventing fatigue-initiated structural failure is numerically costly owing to the inclusion of probabilistic constraints. This study incorporates the Branch-and-Bound method employing system reliability Bounds (termed the B3 method), a failure-path structural system reliability analysis approach, with a metaheuristic optimization algorithm, namely grey wolf optimization (GWO), to obtain the optimal design of structures under fatigue-induced system failure. To further improve the efficiency of this new optimization framework, an additional bounding rule is proposed in the context of SRBDO against fatigue using the B3 method. To demonstrate the proposed method, it is applied to complex problems, a multilayer Daniels system and a three-dimensional tripod jacket structure. The system failure probability of the optimal design is confirmed to be below the target threshold and verified using Monte Carlo simulation. At earlier stages of the optimization, a smaller number of limit-state function evaluation is required, which increases the efficiency. In addition, the proposed method can allocate limited materials throughout the structure optimally so that the optimally-designed structure has a relatively large number of failure paths with similar failure probability.