DOI QR코드

DOI QR Code

An integrated optimal design of energy dissipation structures under wind loads considering SSI effect

  • Zhao, Xuefei (Nanjing Yangtze River Urban Architectural Design Co., LTD.) ;
  • Jiang, Han (Nanjing Yangtze River Urban Architectural Design Co., LTD.) ;
  • Wang, Shuguang (College of Civil engineering, Nanjing Tech University)
  • Received : 2018.03.07
  • Accepted : 2018.12.28
  • Published : 2019.08.25

Abstract

This paper provides a simple numerical method to determine the optimal parameters of tuned mass damper (TMD) and viscoelastic dampers (VEDs) in frame structure for wind vibration control considering the soil-structure interation (SSI) effect in frequency domain. Firstly, the numerical model of frame structure equipped with TMD and VEDs considering SSI effect is established in frequency domain. Then, the genetic algorithm (GA) is applied to obtain the optimal parameters of VEDs and TMD. The optimization process is demonstrated by a 20-storey frame structure supported by pile group for different soil conditions. Two wind resistant systems are considered in the analysis, the Structure-TMD system and the Structure-TMD-VEDs system. The example proves that this method can quickly determine the optimal parameters of energy dissipation devices compared with the traditional finite element method, thus is practically valuable.

Keywords

Acknowledgement

Supported by : National Natural Science Foundation of China

References

  1. Arfiadi, Y. and Hadi, M.N.S. (1998), "Optimum design of absorber for MDOF structures", J. Struct. Eng., 124(11), 1272-1280. https://doi.org/10.1061/(ASCE)0733-9445(1998)124:11(1272).
  2. Aviles, J. and Perez, L.E.(1996), "Evaluation of interaction effects on the system period and system damping due to foundation embedment and layer depth", Soil Dynam. Earthq. Eng., 15(1), 11-27. https://doi.org/10.1016/0267-7261(95)00035-6.
  3. Ayorinde, E.O. and Warbuiron, G.B. (1980), "Optimum absorber parameters for simple systems", Earthq. Eng. Struct. D., 8(3), 197-217. https://doi.org/10.1002/eqe.4290080302.
  4. Bekdas, G. and Nigdeli, S.M. (2011), "Estimating optimum parameters of tuned mass dampers using harmony search", Eng. Struct., 33(9), 2716-2723. https://doi.org/10.1016/j.engstruct.2011.05.024.
  5. Bekdas, G. and Nigdeli, S.M. (2011),, "Investigation of SDOF idealization for structures with optimum tuned mass dampers", Proceedings of the NaturalCataclysms and Global Problems of the Modern Civilization Geocataclysms, September 19-21, Istanbul, Turkey.
  6. Bielak, J.(1976), " Modal analysis for building-soil interaction" , J. Eng. Mech. Division, 102(5), 771-786. https://doi.org/10.1061/JMCEA3.0002160
  7. Brock, J.E. (1946), "A note on damped vibration absorber", J. Appl. Mech.
  8. Chang, C.C. (1999), "Mass dampers and their optimal design for building vibration control", Eng. Struct., 21(5), 454-463. https://doi.org/10.1016/S0141-0296(97)00213-7.
  9. Chang, K.C. and Lin, Y.Y. (2004), "Seismic response of full-scale structure with added viscoelastic dampers", J. Struct. Eng., 130(4), 600-608. https://doi.org/10.1061/(ASCE)0733-9445(2004)130:4(600).
  10. Den Hartog, J.P. (1947), Mechanical Vibrations, McGraw-Hill, New York, NY, USA.
  11. Desu, N.B., Deb, S.K. and Dutta, A. (2006), "Coupled tuned mass dampers forcontrol of coupled vibrations in asymmetric buildings", Struct. Control Health Monit., 13(5), 897-916. https://doi.org/10.1002/stc.64.
  12. Furuya, O., Hamazaki, H. and Fujita, S. (1998), "Proper placement of energy absorbing devices for reduction of wind-induced vibration caused in high-rise buildings", J. Wind Eng. Ind. Aerod., 98(71), 931-942.
  13. Gazetas, G., Fan, K. and Kaynia, A. (1993), "Dynamic response of pile groups with different configuration", Soil Dynam. Earthq. Eng., 12(4), 239-257. https://doi.org/10.1016/0267-7261(93)90061-U.
  14. Hwang, J., Huang, Y., Yi S. and Ho, S. (2008), "Design formulations for supplemental viscous dampers to building structures" , J. Struct.Eng., 134(1), 22-31. https://doi.org/10.1061/(ASCE)0733-9445(2008)134:1(22).
  15. Leung, A.Y.T., Zhang, H., Cheng, C.C. and Lee, Y.Y. (2008), "Particle swarmoptimization of TMD by non-stationary base excitation duringearthquake", Earthq. Eng. Struct. D., 37(9), 1223-1246. https://doi.org/10.1002/eqe.811.
  16. Leung, A.Y.T. and Zhang, H. (2009), "Particle swarm optimization of tuned mass dampers", Eng. Struct., 31(3), 715-728. https://doi.org/10.1016/j.engstruct.2008.11.017.
  17. Lewandowski, R., Bartkowiak, A. and Maciejewski, H.(2012), "Dynamic analysis of frames with viscoelastic dampers: a comparison of damper models", Struct. Eng. Mech., 41(1), 113-137. http://dx.doi.org/10.12989/sem.2012.41.1.113.
  18. Makris, N. and Constantinou, M.C. (1991), " Fractional derivative Maxwell model For viscous dampers", J. Struct. Eng., 117(9), 2708-2724. https://doi.org/10.1061/(ASCE)0733-9445(1991)117:9(2708).
  19. Marano, G.C., Greco, R. and Chiaia, B. (2010), "A comparison between differentoptimization criteria for tuned mass dampers design" , J. Sound Vib., 329(23), 4880-4890. https://doi.org/10.1016/j.jsv.2010.05.015.
  20. Medina, C. and Aznarez J.J.(2013), "Effects of soil-structure interaction on the dynamic properties and seismic response of piled structures" , Soil Dynam. Earthq. Eng., 53(7), 160-175. https://doi.org/10.1016/j.soildyn.2013.07.004.
  21. Nigdeli, S.M. and Bekdas, G. (2011), "Optimization of tuned mass damper parameters for structures subjected to earthquakes with forward directivity," In: Natural Cataclysms and Global Problems of the Modern Civilization Geocataclysms, September 19-21, Istanbul,Turkey.
  22. Paola, M.D. (1998), "Digital simulation of wind field velocity", J. Wind Eng. Ind. Aerod., 74-76, 91-109. https://doi.org/10.1016/S0167-6105(98)00008-7.
  23. Pourzeynali, S., Lavasani, H.H. and Modarayi, A.H. (2008), "Active control of highrise building structures using fuzzy logic and genetic algorithms", Eng. Struct., 29(3), 346-357. https://doi.org/10.1016/j.engstruct.2006.04.015.
  24. Singh, M.P., Singh, S. and Moreschi, L.M. (2002), "Tuned mass dampers forresponse control of torsional buildings", Earthq. Eng. Struct. D., 31(4), 749-769. https://doi.org/10.1002/eqe.119.
  25. Steinbuch, R. (2011), "Bionic optimisation of the earthquake resistance of high buildings by tuned mass dampers", J. Bionic Eng., 8(3), 335-344. https://doi.org/10.1016/S1672-6529(11)60036-X
  26. Veletsos, A.S. and Meek, J.W. (1974), "Dynamic behavior of building-foundation systems", Earthq. Eng. Struct. D., 3(2), 121-138. https://doi.org/10.1002/eqe.4290030203.
  27. Wolf, J.P.(1989), "Soil-structure-interaction analysis in time domain", Nuclear Eng. Design, 111(3), 381-393. https://doi.org/10.1016/0029-5493(89)90249-5.
  28. Warburton, G.B. and Ayorinde, E.O. (1980), "Minimizing structural vibrations with absorbers", Earthq. Eng. Struct. D., 8(3), 219-236. https://doi.org/10.1002/eqe.4290080303.
  29. Zhang, R.H. and Soong, T.T. (1992), "Seismic design of viscoelastic dampers for structural applications", J. Struct. Eng., 118(5), 1375-1392. https://doi.org/10.1061/(ASCE)0733-9445(1992)118:5(1375).

Cited by

  1. Performance analysis of radial flux and axial flux permanent magnet generators for low- speed wind turbine applications vol.65, pp.1, 2019, https://doi.org/10.3233/jae-190150