• Title/Summary/Keyword: Urban Greenhouse

Search Result 136, Processing Time 0.02 seconds

A Study on the Calculation of GHG Emissions from General Ships by Tier3 Method (일반선박의 Tier3 수준의 온실가스 배출량 산정에 관한 연구)

  • Bong, Choon-Keun;Park, Seong-Jin;Kim, Yong-Gu;Lee, Im-Hack;Lee, Hee-Kwan;Hwang, Ui-Hyun
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.33 no.10
    • /
    • pp.701-708
    • /
    • 2011
  • In this study, the emissions of GHG from general ships were calculated by Tier1 method based on the fuel consumption, and by Tier3 method based on the activities data such as power and SFOC of each engine, sailing characteristics (e.g. time and load factor, etc.) considering the ship type. In 2009, the emissions of GHG by Tier1 and Tier3 method were appeared 28.27 mega-ton $CO_{2eq}$ and 30.81 mega-ton $CO_{2eq}$. The emissions by Tier3 were slightly more than those by Tier1. We found that the values of the sailing characteristics for surveyed data are overestimated slightly. In the near future, more detailed researches for sailing characteristics considering ship types would be needed for sailing, anchoring, and berthing condition, etc.

Recent Developments and Field Application of Foreign Waterworks Automatic Meter Reading (국외 상수도 원격검침시스템의 개발 동향 및 현장 적용 사례 고찰)

  • Joo, Jin Chul;Ahn, Hosang;Ahn, Chang Hyuk;Ko, Kyung-Rok;Oh, Hyun-Je
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.34 no.12
    • /
    • pp.863-870
    • /
    • 2012
  • The market trends of automatic meter reading associated with smart water meters were investigated. Also, recent developments and field applications of key technology for automatic meter reading associated with smart water meters were analyzed. Smart water meters have been manufactured mostly in United States and Europe and have been expanded their business to Asia. Integrated water management system combining with the additional functions such as real-time consumption metering, cost notification, water conservation, leak detection, water quality monitoring, and flow control have been operated in automatic meter reading. Both water quality and quantity data measured from smart water meters and sensors were transferred to data concentration units through neighborhood area network, and then were transferred to integrated server through wide area network. The data transfer methods were determined by comprehensively considering urban scale, density of smart water meters, power supply and network topologies. Common data collection methods such as fixed network to data concentation units, vehicles drive by, people walk by, and drone fly by have been applied. The automatic meter reading associated with smart water meters are spread throughout the world, and both water and energy savings result in saving the money and reducing the greenhouse gases emission.

Light Conditions for Suitable Growth of Urban Interior Plants - In Case of Green House within Kyobo Building, Seoul - (도심 실내조경 식물의 적절한 생육에 필요한 광조건 - 서울시 광화문 교보생명빌딩 그린하우스를 대상으로 -)

  • Lee, Kyong-Jae;Choi, Jin-Woo;Pae, Ho-Bong;Kang, Hyun-Kyoung
    • Journal of the Korean Institute of Landscape Architecture
    • /
    • v.37 no.3
    • /
    • pp.113-124
    • /
    • 2009
  • This study has attempted to calculate the intensity of illumination for the optimal growth environment of indoor plants after analyzing both damage to plant species and growth conditions as impacted by light conditions for the Kyobo Life Insurance greenhouse. The optical intensity of illumination has been estimated after investigating the problems of growth conditions based on an analysis of illumination by light condition, dead tree replacement cycle(weeks) and rate of damage of plant species. According to the investigation of illumination, the lowest difference was observed between the shaded spot in the south(531lux) and the sunny spot(602lux) while the largest difference(nearly 500lux) was detected between the shaded spot in the central area(210lux) and the sunny spot(782lux). According to an analysis of dead trees from 1990 to 2004, in terms of dead tree replacement cycle, Viburnum awabuki was the highest(161weeks), followed by Phyllostachys spp.(84weeks), Camellia japonica and Ternstroemia japonica(40weeks). Regardless of plant species, damage rate of plant were lower in the shaded spot and higher in the sunny spot. According to correlation and regression analyses with the intensity of illumination as an independent variable and the damage rate of plant species as a dependent variable, the damage rate of plant species increased as the intensity of illumination decreased. A dramatic decline in the rate of damage was observed at $500{\sim}600lux$. At 700lux, it reached the lowest level.

A Review of U.S. Renewable Energy Expansion and Support Policies (미국의 재생 에너지 확대 및 지원정책 연구)

  • Kim, Chu
    • Land and Housing Review
    • /
    • v.9 no.2
    • /
    • pp.41-50
    • /
    • 2018
  • The purpose of this study is to review the U.S. renewable energy policies implemented by the federal government and the state governments to investigate potential barriers of renewable energy expansion and to develop policy implications for the successful renewable energy policy making in Korea. Recently, the restructuring in the energy supply chain has been being a new trend in many countries that shows a transition from traditional fossil fuels to sustainable renewable energy sources. The United States has enforced effective renewable energy policies (i.e., regulatory policies, financial incentives), which have led to the exploding growth of renewable energy facilities and productions over the last ten years. For example, many state governments in the U.S. are implementing Renewable Portfolio Standard (RPS) policies that require increased energy supply from renewable energy sources (i.e., solar, wind and geothermal). These RPS policies are expected to account for at least 10-50 percent of total electricity production in the next fifteen years. As part of results, in the recent three years, renewable energy in the U.S provided over 50 percent of total new power generation constructions. On the other hand, Korea initiated to develop climate change policies in 2008 for the Green Growth Policy that set up a target reduction of national Greenhouse Gas (GHG) emissions up to 37 percent by 2025. However, statistical data for accumulated renewable energy capacity refer that Korea is still in its early stage that contribute to only 7 percent of the total electricity production capacity and of which hydroelectric power occupied most of the production. Thus, new administration in Korea announced a new renewable energy policy (Renewable Energy 3020 Plan) in 2017 that will require over 95 percent of the total new generations as renewable energy facilities to achieve up to 20 percent of the total electricity production from renewable energy sources by 2030. However, to date, there have not been enough studies to figure out the barriers of the current policy environment and to develop implications about renewable energy policies to support the government plan in Korea. Therefore, this study reviewed the U.S. renewable energy policies compared with Korean policies that could show model cases to introduce related policies and to develop improved incentives to rapidly spread out renewable energy facilities in Korea.

Effects of a Negative-Phototropism Pot on the Seedling Growth of Betula platyphylla var. japonica for the Ecological Revegetation (배광성용기 사용이 생태녹화용 자작나무 유묘 생장에 미치는 영향)

  • Kang, Byoung Youn;Kim, Jae Hwan
    • Ecology and Resilient Infrastructure
    • /
    • v.6 no.4
    • /
    • pp.295-303
    • /
    • 2019
  • This study investigated the effects of various cultivation pots on Betula platyphylla var. japonica seedlings in order to select suitable pots for the production of healthy seedlings for the ecological revegetation. We used six types of the pots natural pot, natural pot with inside 5 mm width root turning bump, natural pot with inside 10 mm width root turning bump, negative-phototropism pot, negative-phototropism pot with inside 5 mm width root turning bump, and negative-phototropism pot with inside 10 mm width root turning bump. As greenhouse cultivation provided a high level of control of irrigation and temperature, the seedlings did not show any significant differences in plant height, number of branches, and diameter at root collar, but showed a significant difference in root growth among the different types of pots. The root growth was best in the negative-phototropism pot. In the negative-phototropism, the roots grew in a vertical shape, while they grew abnormally in a spiral shape in the natural pots. In outdoor cultivation, the growth of seedlings showed significant differences according to container types. The seedlings grown in specially manufactured negative-phototropism pots were most excellent in all of the height, number of branches, diameter at root collar and root growth. As for the seedlings grown in the negative-phototropism pots, their roots grew vertically and thus their rooting was well established after they were transplanted outdoor. A size of less than 5 mm ridge installed in the negative-phototropism was found to be appropriate for the seedling growth. These results showed that the negative-phototropism pot would be best suitable for the growth of Betula platyphylla var. japonica seedlings and for the production of seedling for ecological revegetation.

Development of a Moving Monitor System for Growing Crops and Environmental Information in Green House (시설하우스 이동형 환경 및 생장 모니터링 시스템 개발)

  • Kim, Ho-Joon
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.9 no.3
    • /
    • pp.285-290
    • /
    • 2016
  • In rural area, our farmers confront decreasing benefits owing to imported crops and increased cost. Recently, the government encourage the 6th Industry that merges farming, rural resources, and information and communication technology. Therefor the government makes an investment in supplying 'smart greenhouse' in which a farmer monitor growing crops and environment information to control growing condition. The objective of this study is developing an Moving Monitor and Control System for crops in green House. This system includes a movable sensing unit, a controlling unit, and a server PC unit. The movable sensing unit contains high resolution IP camera, temperature and humidity sensor and WiFi repeater. It rolls on a rail hanging beneath the ceiling of a green house. The controlling unit contains embedded PC, PLC module, WiFi router, and BLDC motor to drive the movable sensing unit. And the server PC unit contains a integrated farm management software and home pages and databases in which the images of crops and environment informations. The movable sensing unit moves widely in a green house and gathers lots of information. The server saves these informations and provides them to customers with the direct commercing web page. This system will help farmers to control house environment and sales their crops in online market. Eventually It will be helpful for farmers to increase their benefits.

Investigation on the Key Parameters for the Strengthening Behavior of Biopolymer-based Soil Treatment (BPST) Technology (바이오폴리머-흙 처리(BPST) 기술의 강도 발현 거동에 대한 주요 영향인자 분석에 관한 연구)

  • Lee, Hae-Jin;Cho, Gye-Chum;Chang, Ilhan
    • Land and Housing Review
    • /
    • v.12 no.3
    • /
    • pp.109-119
    • /
    • 2021
  • Global warming caused by greenhouse gas emissions has rapidly increased abnormal climate events and geotechnical engineering hazards in terms of their size and frequency accordingly. Biopolymer-based soil treatment (BPST) in geotechnical engineering has been implemented in recent years as an alternative to reducing carbon footprint. Furthermore, thermo-gelating biopolymers, including agar gum, gellan gum, and xanthan gum, are known to strengthen soils noticeably. However, an explicitly detailed evaluation of the correlation between the factors, that have a significant influence on the strengthening behavior of BPST, has not been explored yet. In this study, machine learning regression analysis was performed using the UCS (unconfined compressive strength) data for BPST tested in the laboratory to evaluate the factors influencing the strengthening behavior of gellan gum-treated soil mixtures. General linear regression, Ridge, and Lasso were used as linear regression methods; the key factors influencing the behavior of BPST were determined by RMSE (root mean squared error) and regression coefficient values. The results of the analysis showed that the concentration of biopolymer and the content of clay have the most significant influence on the strength of BPST.

Complementary measures for Environmental Performance Evaluation Index of External Space of Green Standard for Energy and Environmental Design for Apartment Complex - Focused on the Respect of Response to Climate Change - (공동주택 녹색건축인증기준의 외부공간 환경성능 평가지표 보완방안 - 기후변화 대응 측면을 중심으로 -)

  • Ye, Tae-Gon;Kim, Kwang-Hyun;Kwon, Young-Sang
    • Journal of the Architectural Institute of Korea Planning & Design
    • /
    • v.34 no.1
    • /
    • pp.3-14
    • /
    • 2018
  • An apartment complex is a building use with great potential to contribute to solving problems related to urban ecological environment and climate change. The first goal of this study is to grasp the current situation of application and limitations of the ecological area rate, which is a representative evaluation index used to evaluate the environmental performance of the external space of an apartment complex in Green Standard for Energy and Environmental Design (G-SEED). The second goal is to propose a prototype of the evaluation index for evaluating greenhouse gas (GHG) reduction performance in order to supplement the evaluation index for the environmental performance of the external space in terms of response to climate change. We analyzed 43 cases of apartment complexes certified according to G-SEED, which was enforced since July 1, 2010, and found application characteristics of each space type and the limitations of ecological area rate. We analyzed overseas green building certification systems such as LEED and BREEAM that derived implications for supplementing the limitations of ecological area rate, which is focused on the evaluation of soil and water circulation function, and set up a development direction of complementary measures. Through analysis of previous studies, relevant regulations and standards, and technical documents of the manufacturer, the heat island mitigation performance of the pavement and roof surfaces of the apartment complex and the carbon uptake performance of the trees in the apartment complex was selected as parameters to yield the GHG reduction performance of the external space of the apartment complex. Finally, a quantitative evaluation method for each parameter and a prototype of the evaluation index for the GHG reduction performance were proposed. As a result of applying the prototype to an apartment complex case, the possibility of adoption and applicability as an evaluation index of G-SEED were proved.

Future Projection of Extreme Climate over the Korean Peninsula Using Multi-RCM in CORDEX-EA Phase 2 Project (CORDEX-EA Phase 2 다중 지역기후모델을 이용한 한반도 미래 극한 기후 전망)

  • Kim, Do-Hyun;Kim, Jin-Uk;Byun, Young-Hwa;Kim, Tae-Jun;Kim, Jin-Won;Kim, Yeon-Hee;Ahn, Joong-Bae;Cha, Dong-Hyun;Min, Seung-Ki;Chang, Eun-Chul
    • Atmosphere
    • /
    • v.31 no.5
    • /
    • pp.607-623
    • /
    • 2021
  • This study presents projections of future extreme climate over the Korean Peninsula (KP), using bias-corrected data from multiple regional climate model (RCM) simulations in CORDEX-EA Phase 2 project. In order to confirm difference according to degree of greenhouse gas (GHG) emission, high GHG path of SSP5-8.5 and low GHG path of SSP1-2.6 scenario are used. Under SSP5-8.5 scenario, mean temperature and precipitation over KP are projected to increase by 6.38℃ and 20.56%, respectively, in 2081~2100 years compared to 1995~2014 years. Projected changes in extreme climate suggest that intensity indices of extreme temperatures would increase by 6.41℃ to 8.18℃ and precipitation by 24.75% to 33.74%, being bigger increase than their mean values. Both of frequency indices of the extreme climate and consecutive indices of extreme precipitation are also projected to increase. But the projected changes in extreme indices vary regionally. Under SSP1-2.6 scenario, the extreme climate indices would increase less than SSP5-8.5 scenario. In other words, temperature (precipitation) intensity indices would increase 2.63℃ to 3.12℃ (14.09% to 16.07%). And there is expected to be relationship between mean precipitation and warming, which mean precipitation would increase as warming with bigger relationship in northern KP (4.08% ℃-1) than southern KP (3.53% ℃-1) under SSP5-8.5 scenario. The projected relationship, however, is not significant for extreme precipitation. It seems because of complex characteristics of extreme precipitation from summer monsoon and typhoon over KP.

Climatic Yield Potential Changes Under Climate Change over Korean Peninsula Using 1-km High Resolution SSP-RCP Scenarios (고해상도(1km) SSP-RCP시나리오 기반 한반도의 벼 기후생산력지수 변화 전망)

  • Sera Jo;Yong-Seok Kim;Jina Hur;Joonlee Lee;Eung-Sup Kim;Kyo-Moon Shim;Mingu Kang
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.25 no.4
    • /
    • pp.284-301
    • /
    • 2023
  • The changes in rice climatic yield potential (CYP) across the Korean Peninsula are evaluated based on the new climate change scenario produced by the National Institute of Agricultural Sciences with 18 ensemble members at 1 km resolution under a Shared Socioeconomic Pathway (SSP) and Representative Concentration Pathways (RCP) emission scenarios. To overcome the data availability, we utilize solar radiation f or CYP instead of sunshine duration which is relatively uncommon in the climate prediction f ield. The result show that maximum CYP(CYPmax) decreased, and the optimal heading date is progressively delayed under warmer temperature conditions compared to the current climate. This trend is particularly pronounced in the SSP5-85 scenario, indicating faster warming, except for the northeastern mountainous regions of North Korea. This shows the benef its of lower emission scenarios and pursuing more efforts to limit greenhouse gas emissions. On the other hand, the CYPmax shows a wide range of feasible futures, which shows inherent uncertainties in f uture climate projections and the risks when analyzing a single model or a small number of model results, highlighting the importance of the ensemble approach. The f indings of this study on changes in rice productivity and uncertainties in temperature and solar radiation during the 21st century, based on climate change scenarios, hold value as f undamental information for climate change adaptation efforts.