DOI QR코드

DOI QR Code

Climatic Yield Potential Changes Under Climate Change over Korean Peninsula Using 1-km High Resolution SSP-RCP Scenarios

고해상도(1km) SSP-RCP시나리오 기반 한반도의 벼 기후생산력지수 변화 전망

  • Sera Jo (Climate change Assessment Division, National Institute of Agricultural Sciences) ;
  • Yong-Seok Kim (Climate change Assessment Division, National Institute of Agricultural Sciences) ;
  • Jina Hur (Climate change Assessment Division, National Institute of Agricultural Sciences) ;
  • Joonlee Lee (School of Urban and Environmental Engineering, Ulsan National Institute of Science and Technology) ;
  • Eung-Sup Kim (Climate change Assessment Division, National Institute of Agricultural Sciences) ;
  • Kyo-Moon Shim (Climate change Assessment Division, National Institute of Agricultural Sciences) ;
  • Mingu Kang (Climate change Assessment Division, National Institute of Agricultural Sciences)
  • 조세라 (국립농업과학원 기후변화평가과) ;
  • 김용석 (국립농업과학원 기후변화평가과) ;
  • 허지나 (국립농업과학원 기후변화평가과) ;
  • 이준리 (울산과학기술원 지구환경도시건설공학과) ;
  • 김응섭 (국립농업과학원 기후변화평가과) ;
  • 심교문 (국립농업과학원 기후변화평가과) ;
  • 강민구 (국립농업과학원 기후변화평가과)
  • Received : 2023.11.09
  • Accepted : 2023.12.03
  • Published : 2023.12.30

Abstract

The changes in rice climatic yield potential (CYP) across the Korean Peninsula are evaluated based on the new climate change scenario produced by the National Institute of Agricultural Sciences with 18 ensemble members at 1 km resolution under a Shared Socioeconomic Pathway (SSP) and Representative Concentration Pathways (RCP) emission scenarios. To overcome the data availability, we utilize solar radiation f or CYP instead of sunshine duration which is relatively uncommon in the climate prediction f ield. The result show that maximum CYP(CYPmax) decreased, and the optimal heading date is progressively delayed under warmer temperature conditions compared to the current climate. This trend is particularly pronounced in the SSP5-85 scenario, indicating faster warming, except for the northeastern mountainous regions of North Korea. This shows the benef its of lower emission scenarios and pursuing more efforts to limit greenhouse gas emissions. On the other hand, the CYPmax shows a wide range of feasible futures, which shows inherent uncertainties in f uture climate projections and the risks when analyzing a single model or a small number of model results, highlighting the importance of the ensemble approach. The f indings of this study on changes in rice productivity and uncertainties in temperature and solar radiation during the 21st century, based on climate change scenarios, hold value as f undamental information for climate change adaptation efforts.

본 연구에서는 1km 고해상도 앙상블 신기후변화 시나리오(공통사회 경제경로 시나리오) 자료를 기반으로 하여 남한을 포함한 한반도 전체의 벼 기후생산성(CYP) 변화를 평가하였다. 이때, 기후변화 시나리오자료에서 제공하는 제한적인 변수를 활용하기 위해 일조시간을 대신하여 일사량을 이용하였다. 연구 결과에 따르면, 현재 기후에 비해 온난화된 미래 기후조건에서 CYPmax 값은 감소하고 최적출수일은 점차 늦춰지는 경향이 나타났다. 이는 고도가 높은 한반도 북동부의 산악 지역을 제외하고 모든 지역에서 나타나는 현상이며, 특히 온난화가 빠르게 진행되는 SSP585시나리오 일수록 더욱 뚜렷하게 나타났다. 이러한 결과는 낮은 배출 시나리오의 이점을 보여주는 동시에 온실 가스 배출을 제한하기 위해 더 많은 노력을 기울일 필요가 있음을 강조한다. 한편, CYPmax의 시계열에서 넓은 폭의 앙상블 스프레드가 나타났는데, 이는 단일모형 혹은 작은 수의 모형을 선택하였을 때 미래 변화 분석에 내재된 불확실성을 보여주며 앙상블 예측의 중요성을 보여준다. 본 연구를 통해 분석된 장기간의 기온 및 일사 조건의 변화에 따른 기후학적 벼 생산성 변화 및 불확실성에 대한 분석은 기후변화 대응을 위한 기초정보로써 가치가 있다.

Keywords

Acknowledgement

이 연구는 농촌진흥청 국립농업과학원 농업과학기술 연구개발사업(과제번호: RS-2020-RD009291)의 지원으로 수행되었습니다

References

  1. Ahn, J. B., J. Y. Hong, and K. M Shim, 2016a: Agro-climate changes over Northeast Asia in RCP scenarios simulated by WRF. International Journal of Climatology 36(3), 1278-1290. https://doi.org/10.1002/joc.4423
  2. Ahn, J. B., S. Jo, M. S. Suh, D. H. Cha, D. K. Lee, S. Y. Hong, S. K. Min, S. C. Park, S. H. Kang, and K. M. Shim, 2016b: Changes of precipitation extremes over South Korea projected by the 5 RCMs under RCP scenarios. Asia-Pacific Journal of Atmospheric Sciences 52, 223-236. https://doi.org/10.1007/s13143-016-0021-0
  3. Ahn, J. B., Y. H. Kim, K. M. Shim, M. S. Suh, D. H. Cha, D. K. Lee, S. Y. Hong, S. K. Min, S. C. Park, and H. S. Kang, 2021: Climatic yield potential of Japonica-type rice in the Korean Peninsula under RCP scenarios using the ensemble of multi-GCM and multi-RCM chains. International Journal of climatology 41, E1287-E1302. https://doi.org/10.1002/joc.6767
  4. Bi, D., M. Dix, S. Marsland, S. O'farrell, A. Sullivan, R. Bodman, R. Law, I. Harman, J. Srbinovsky, H. A. Rashid, P. Dobrohotoff, C. Mackallah, H. Yan, A. Hirst, A. Savita, F. B. Dias, M. Woodhouse, R. Fiedler, and A. Heerdegen, 2020: Configuration and spin-up of ACCESS-CM2, the new generation Australian community climate and earth system simulator coupled model. Journal of Southern Hemisphere Earth Systems Science 70(1), 225-251. https://doi.org/10.1071/ES19040
  5. Boucher, O., S. Denvil, G. Levavasseur, A. Cozic, A. Caubel, M. A. Foujols, Y. Meurdesoif, P. Cadule, M. Devilliers, J. Ghattas, N. Lebas, T. Lurton, L. Mellul, I. Musat, J. Mignot, and F. Cheruy, 2018: IPSL IPSL-CM6A-LR model output prepared for CMIP6 CMIP. https://doi.org/10.22033/ESGF/CMIP6.1534
  6. H. Chen and J. Sun, 2013: Projected change in east Asian summer monsoon precipitation under RCP scenario. Meteorology and Atmospheric Physics 121, 55-77. https://doi.org/10.1007/s00703-013-0257-5
  7. Doscher, R., M. Acosta, A. Alessandri, P. Anthoni, A. Arneth, and T. Arsouze, 2022: The EC-Earth3 Earth system model for the Coupled Model Intercomparison Project 6. Geoscientific Model Development 15, 2973-3020. https://doi.org/10.5194/gmd-15-2973-2022
  8. Dunne, J. P., L. W. Horowitz, A. J. Adcroft, P. Ginoux, I. M. Held, J. G. John, J. P. Krasting, S. Malyshev, V. Naik, F. Paulot, E. Shevliakova, C. A. Stock, N. Zadeh, V. Balaji, C. Blanton, K. A. Dunne, C. Dupuis, J. Durachta, R. Dussin, P. P. G. Gauthier, S. M. Griffies, H. Guo, R. W. Hallberg, M. Harrison, J. He, W. Hurlin, C. McHugh, R. Menzel, P. C. D. Milly, S. Nikonov, D. J. Paynter, J. Ploshay, A. Radhakrishnan, K. Rand, B. G. Reichl, T. Robinson, D. M. Schwarzkopf, L. T. Sentman, S. Underwood, H. Vahlenkamp, M. Winton, A. T. Wittenberg, B. Wyman, Y. Zeng, and M. Zhao, 2020: The GFDL Earth System Model version 4.1 (GFDL-ESM 4.1): Overall coupled model description and simulation characteristics. Journal of Advances in Modeling Earth Systems 12(11), e2019MS002015. https://doi.org/10.1029/2019MS002015
  9. Hajima, T., M. Watanabe, A. Yamamoto, H. Tatebe, M. A. Noguchi, M. Abe, R. Ohgaito, A. Ito, D. Yamazaki, H. Okajima, A. Ito, K. Takata, K. Ogochi, S. Watanabe, and M. Kawamiya, 2020: Development of the MIROC-ES2L Earth system model and the evaluation of biogeochemical processes and feedbacks. Geoscientific Model Development 13(5), 2197-2244. https://doi.org/10.5194/gmd-13-2197-2020
  10. Hanyu, J., T. Uchijima, and S. Sugawara, 1966: Studies on the agro-climatological method for expressing the paddy rice products. I. an agro-climatic index for expressing the quantity of ripening of the paddy rice. Bulletin of Tohoku National Agricultural Experimental Station 34, 27-36.
  11. Hong, S. Y., J. Hur, J. B. Ahn, J. M. Lee, B. K. Min, C. K. Lee, Y. Kim, K. D. Lee, S.-H. Kim, G. Y. Kim and K. M. Shim, 2012: Estimating rice yield using MODIS NDVI and meteorological data in Korea. Korean Journal of Remote Sensing 28(5), 509-520. (in Korean with English abstract) https://doi.org/10.7780/KJRS.2012.28.5.4
  12. IPCC, 2023, Climate Change 2023: Synthesis Report. Contribution of Working Groups I, II and III to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change [Core Writing Team, H. Lee and J. Romero (eds.)]. IPCC, Geneva, Switzerland, 35-115.
  13. Kim, J., W. Sang, P. Shin, H. Cho, M. Seo, B. Yoo, and K. S. Kim, 2015: Evaluation of regional climate scenario data for impact assessment of climate change on rice productivity in Korea. Journal of Crop Science and Biotechnology 18(4), 257-264. https://doi.org/10.1007/s12892-015-0103-z
  14. Kim, S. O., and J. I. Yun, 2015: Improving the usage of the Korea Meteorological Administration's digital forecasts in agriculture: IV. Estimation of daily sunshine duration and solar radiation based on 'Sky Condition' product. Korean Journal of Agricultural and Forest Meteorology 17(4), 281-289. (in Korean with English abstract) https://doi.org/10.5532/KJAFM.2015.17.4.281
  15. Lee B. W., 2012, Climate change impacts and responses to global agriculture. World Agriculture 146(0), 79-94. (in Korean with English abstract)
  16. Lee, C. K., D. S. Kim, Y. U. Kwon, J. E. Lee, J. H. Seo, and B. W. Lee, 2009: The effect of temperature and radiation on grain weight and grain nitrogen content in rice. Korean Journal of crop science 54(1), 36-44. (in Korean with English abstract)
  17. Lee, C. K., K. S. Kwak, J. H. Kim, J. Y. Son, and W. H. Yang, 2011: Impacts of Climate Change and Follow-up Cropping Season Shift on Growing Period and Temperature in Different Rice Maturity Types. Korean journal of crop science 56(3), 233-243. (in Korean with English abstract) https://doi.org/10.7740/KJCS.2011.56.3.233
  18. Lee, J., J. Kim, M. A. Sun, B. H. Kim, H. Moon, H. M. Sung, J. Kim, and Y. H. Byun, 2020: Evaluation of the Korea meteorological administration advanced community earth-system model (K-ACE). Asia-Pacific Journal of Atmospheric Sciences 56, 381-395. https://doi.org/10.1007/s13143-019-00144-7
  19. Mauritsen, T., J. Bader, T. Becker, J. Behrens, M. Bittner, R. Brokopf, V. Brovkin, M. Claussen, T. Crueger, M. Esch, I. Fast, S. Fiedler, D. Flaschner, V. Gayler, M. Giorgetta, D. S. Goll, H. Haak, S. Hagemann, C. Hedemann, C. Hohenegger, T. Ilyina, T. Jahns, D. Jimenez-de-la-Cuesta, J. Jungclaus, T. Kleinen, S. Kloster, D. Kracher, S. Kinne, D. Kleberg, G. Lasslop, L. Kornblueh, J. Marotzke, D. Matei, K. Meraner, U. Mikolajewicz, K. Modali, B. Mobis, W. A. Muller, J. E. M. S. Nabel, C. C. W. Nam, D. Notz, S.-S. Nyawira, H. Paulsen, K. Peters, R. Pincus, H. Pohlmann, J. Pongratz, M. Popp, T. J. Raddatz, S. Rast, R. Redler, C. H. Reick, T. Rohrschneider, V. Schemann, H. Schmidt, R. Schnur, U. Schulzweida, K. D. Six, L. Stein, I. Stemmler, B. Stevens, J.-S. Storch, F. Tian, A. Voigt, P. Vrese, K.-H. Wieners, S. Wilkenskjeld, A. Winkler, and E. Roeckner, 2019: Developments in the MPI-M Earth System Model version 1.2 (MPI-ESM1. 2) and its response to increasing CO2. Journal of Advances in Modeling Earth Systems, 11(4), 998-1038. https://doi.org/10.1029/2018MS001400
  20. Muller, W. A., J. H. Jungclaus, T. Mauritsen, J. Baehr, M. Bittner, R. Budich, F. Bunzel, M. Esch, R. Ghosh, H. Haak, T. Ilyina, T. Kleine, L. Kornblueh, H. Li, K. Modali, D. Notz, H. Pohlmann, E. Roeckner, I. Stemmler, F. Tian, and J. Marotzke, 2018: A higher-resolution version of the max planck institute earth system model (MPI-ESM1. 2-HR). Journal of Advances in Modeling Earth Systems 10(7), 1383-1413. https://doi.org/10.1029/2017MS001217
  21. O'Neill, B. C., E. Kriegler, K. Riahi, K. L. Ebi, S. Hallegatte, T. R. Carter, R. Marthur, and D. P. van Vuuren, 2014: A new scenario framework for climate change research: the concept of shared socioeconomic pathways. Climatic change 122, 387-400. https://doi.org/10.1007/s10584-013-0905-2
  22. Oh, S. G., J. H. Park, S. H. Lee, and M. S. Suh, 2014: Assessment of the RegCM4 over East Asia and future precipitation change adapted to the RCP scenarios. Journal of Geophysical Research: Atmospheres 119(6), 2913-2927. https://doi.org/10.1002/2013JD020693
  23. RDA, 2021, Guideline on produce high-resolution climate change data based on SSP scenarios for Agricultural Applications. Rural Development Administration, Rep. Korea, https://www.korea.kr/archive/expDocView.do?docId=39829
  24. Seferian, R., P. Nabat, M. Michou, D. Saint-Martin, A. Voldoire, J. Colin, B. Decharme, C. Delire, S. Berthet, M. Chevallier, S. Senesi, L. Franchisteguy, J. Vial, M. Mallet, E. Joetzjer, O. Geoffroy, J.-F. Gueremy, M.-P. Moine, R. Msadek, A. Ribes, M. Rocher, R. Roehrig, D. Salas-y-Melia, E. Sanchez, L. Terray, S. Valcke, R. Waldman, O. Aumont, L. Bopp, J. Deshayes, C. Ethe, and G. Madec, 2019: Evaluation of CNRM Earth System Model, CNRM-ESM2-1: Role of Earth system processes in present-day and future climate. Journal of Advances in Modeling Earth Systems 11(12), 4182-4227. https://doi.org/10.1029/2019MS001791
  25. Seland, O., M. Bentsen, D. Olivie, T. Toniazzo, A. Gjermundsen, L. S. Graff, J. B. Debernard, A. K. Gupta, Y.-C. He, A. Kirkevag, J. Schwinger, J. Tjiputra, K. S. Aas, I. Bethke, Y. Fan, J. Griesfeller, A. Grini, C. Guo, M. Ilicak, I. H. H. Karset, O. Landgren, J. Liakka, K. O. Moseid, A. Nummelin, C. Spensberger, H. Tang, Z. Zhang, C. Heinze, T. Iversen, and M. Schulz, 2020: Overview of the Norwegian Earth System Model (NorESM2) and key climate response of CMIP6 DECK, historical, and scenario simulations. Geoscientific Model Development 13(12), 6165-6200. https://doi.org/10.5194/gmd-13-6165-2020
  26. Sellar, A. A., C. G. Jones, J. P. Mulcahy, Y. Tang, A. Yool, A. Wiltshire, F. M. O'Connor, M. Stringer, R. Hill, J. Palmieri, S. Woodward, L. de Mora, T. Kuhlbrodt, S. T. Rumbold, D. I. Kelley, R. Ellis, C. E. Johnson, J. Walton, N. L. Abraham, M. B. Andrews, T. Andrews, A. T. Archibald, S. Berthou, E. Burke, E. Blockley, K. Carslaw, M. Dalvi, J. Edwards, G. A. Folberth, N. Gedney, P. T. Griffiths, A. B. Harper, M. A. Hendry, A. J. Hewitt, B. Johnson, A. Jones, C. D. Jones, J. Keeble, S. Liddicoat, O. Morgenstern, R. J. Parker, V. Predoi, E. Robertson, A. Siahaan, R. S. Smith, R. Swaminathan, M. T. Woodhouse, G. Zeng, and M. Zerroukat, 2019: UKESM1: Description and evaluation of the UK Earth System Model. Journal of Advances in Modeling Earth Systems 11(12), 4513-4558. https://doi.org/10.1029/2019MS001739
  27. Shim K. M., Y. -S. Kim, M.-P. Jung, and I.-T. Choi, 2014: Change of Climatic Productivity Index for Rice under Recent Climate Change in Korea. Korean Journal of Agricultural and Forest Meteorology 16(4), 384-388. (in Korean with English abstract) https://doi.org/10.5532/KJAFM.2014.16.4.384
  28. Swart, N. C., J. N. Cole, V. V. Kharin, M. Lazare, J. F. Scinocca, N. P. Gillett, V. V. Kharin, M. Lazare, J. F. Scinocca, N. P. Gillett, J. Anstey, V. Arora, J. R. Christian, S. Hanna, Y. Jiao, W. G. Lee, F. Majaess, O. A. Saenko, C. Seiler, C. Seinen, A. Shao, M. Sigmond, L. Solheim, K. von Salzen, D. Yang, and B. Winter, 2019: The Canadian earth system model version 5 (CanESM5. 0.3). Geoscientific Model Development 12(11), 4823-4873. https://doi.org/10.5194/gmd-12-4823-2019
  29. Tatebe, H., T. Ogura, T. Nitta, Y. Komuro, K. Ogochi, T. Takemura, K. Sudo, M. Sekiguchi, M. Abe, F. Saito, M. Chikira, S. Watanabe, M. Mori, N. Hirota, Y. Kawatani, T. Mochizuki, K. Yoshimura, K. Takata, R. O'ishi, D. Yamazaki, T. Suzuki, M. Kurogi, T. Kataoka, M. Watanabe, and M. Kimoto, 2019: Description and basic evaluation of simulated mean state, internal variability, and climate sensitivity in MIROC6. Geoscientific Model Development 12(7), 2727-2765. https://doi.org/10.5194/gmd-12-2727-2019
  30. van Vuuren, D. P., E. Kriegler, B. C. O'Neill, K. L. Ebi, K. Riahi, T. R. Carter, J. Edmonds, S. Hallegatte, T. Kram, R. Mathur, and H. Winkler, 2014: A New Scenario Framework for Climate Change Research: Scenario Matrix Architecture. Climatic Change 122, 373-386. https://doi.org/10.1007/s10584-013-0906-1
  31. Voldoire, A., D. Saint-Martin, S. Senesi, B. Decharme, A. Alias, M. Chevallier, J. Colin, J.-F. Gueremy, M. Michou, M.-P. Moine, P. Nabat, R. Roehrig, D. Salas y Melia, R. Seferian, S. Valcke, I. Beau, S. Belamari, S. Berthet, C. Cassou, J. Cattiaux, J. Deshayes, H. Douville, C. Ethe, L. Franchisteguy, O. Geoffroy, C. Levy, G. Madec, Y. Meurdesoif, R. Msadek, A. Ribes, E. Sanchez-Gomez, L. Terray, and R. Waldman, 2019: Evaluation of CMIP6 deck experiments with CNRM-CM6-1. Journal of Advances in Modeling Earth Systems 11(7), 2177-2213. https://doi.org/10.1029/2019MS001683
  32. Volodin, E., E. Mortikov, A. Gritsun, V. Lykossov, V. Galin, N. Diansky, A. Gusev, S. Kostrykin, N. Iakovlev, A. Shestakova and S. Emelina, 2019a: INM INM-CM4-8 model output prepared for CMIP6 CMIP.
  33. Volodin, E., E. Mortikov, A. Gritsun, V. Lykossov, V. Galin, N. Diansky, A. Gusev, S. Kostrykin, N. Iakovlev, A. Shestakova and S. Emelina, 2019b: INM INM-CM5-0 model output prepared for CMIP6 CMIP.
  34. Yukimoto, S., H. Kawai, T. Koshiro, N. Oshima, K. Yoshida, S. Urakawa, H. Tsujino, M. Deushi, T. Tanaka, M. Hosaka, S. Tabu, H. Yoshimura, E. Shindo, R. Mizuta, A. Obata, Y. Adachi, and M. Ishii, 2019: The Meteorological Research Institute Earth System Model version 2.0, MRI-ESM2. 0: Description and basic evaluation of the physical component. Journal of the Meteorological Society of Japan. Ser. II 97(5), 931-965. https://doi.org/10.2151/jmsj.2019-051
  35. Ziehn, T., M. Chamberlain, A. Lenton, R. Law, R. Bodman, M. Dix, Y. Wang, P. Dobrohotoff, J. Srbinovsky, L. Stevens, P. Vohralik, C. Mackallah, A. Sullivan, S. O'Farrell, and K. Druken, 2019: IPCC DDC: CSIRO ACCESS-ESM1. 5 model output prepared for CMIP6 CMIP.