DOI QR코드

DOI QR Code

Investigation on the Key Parameters for the Strengthening Behavior of Biopolymer-based Soil Treatment (BPST) Technology

바이오폴리머-흙 처리(BPST) 기술의 강도 발현 거동에 대한 주요 영향인자 분석에 관한 연구

  • 이해진 (아주대학교 건설시스템공학과) ;
  • 조계춘 (한국과학기술원 건설환경공학과) ;
  • 장일한 (아주대학교 건설시스템공학과)
  • Received : 2021.10.05
  • Accepted : 2021.10.12
  • Published : 2021.10.30

Abstract

Global warming caused by greenhouse gas emissions has rapidly increased abnormal climate events and geotechnical engineering hazards in terms of their size and frequency accordingly. Biopolymer-based soil treatment (BPST) in geotechnical engineering has been implemented in recent years as an alternative to reducing carbon footprint. Furthermore, thermo-gelating biopolymers, including agar gum, gellan gum, and xanthan gum, are known to strengthen soils noticeably. However, an explicitly detailed evaluation of the correlation between the factors, that have a significant influence on the strengthening behavior of BPST, has not been explored yet. In this study, machine learning regression analysis was performed using the UCS (unconfined compressive strength) data for BPST tested in the laboratory to evaluate the factors influencing the strengthening behavior of gellan gum-treated soil mixtures. General linear regression, Ridge, and Lasso were used as linear regression methods; the key factors influencing the behavior of BPST were determined by RMSE (root mean squared error) and regression coefficient values. The results of the analysis showed that the concentration of biopolymer and the content of clay have the most significant influence on the strength of BPST.

최근 지구 온난화로 인한 이상 기후로 인해 과거보다 더 많은 지반공학 재해들이 발생하고 있으며, 재해들의 규모도 더욱 증대되고 있다. 최근 토목 및 건설분야에 소개된 바이오폴리머 기반 흙 처리(BPST; Biopolymer-based soil treatment) 기술은 효율적으로 흙의 강도를 증진시키면서 탄소배출이 거의 없는 친환경 지반보강법으로 알려져 있다. 특히, 아가검, 젤란검, 잔탄검과 같은 열적젤화 특성을 지닌 바이오폴리머들의 강도 증진 효과가 매우 우수함이 여러 연구를 통해 밝혀지고 있다. 하지만 바이오폴리머 함량 외에는 바이오폴리머 기반 흙 처리에서 흙의 강도 증진을 제어하는 주요 영향인자 규명에 대한 연구는 많이 부족한 실정이다. 본 연구에서는 기존 발표된 열적젤화 바이오 폴리머 처리 흙의 불구속일축압축강도(UCS; Unconfined compressive strength) 자료에 대한 기계학습 기반 선형회귀 분석을 통해 젤란검 바이오폴리머로 처리된 흙의 강도 발현을 결정하는 주요 인자들을 분석하였다. 해석 결과, 바이오폴리머 함량과 더불어 흙 속 점토 함량이 강도 발현에 가장 중요한 인자임을 확인할 수 있었다.

Keywords

References

  1. 권철민(2020), 「파이썬 머신러닝 완벽 가이드」, 파주: 위키북스.
  2. Agassi, M. and M. Ben-Hur (1992), "S tabilizing steep slopes with soil conditioners and plants", Soil Technology, 5: 249~256. https://doi.org/10.1016/0933-3630(92)90025-V
  3. Bouazza, A., W. Gates and P. Ranjith (2009), "Hydraulic conductivity of biopolymer-treated silty sand", Geotechnique, 59: 71~72. https://doi.org/10.1680/geot.2007.00137
  4. Bouwer, L. M. (2011), "Have disaster losses increased due to anthropogenic climate change?", Bull. Am. Meteorol. Soc., 92: 39~46. https://doi.org/10.1175/2010BAMS3092.1
  5. Cao, S. (2008), "Why large-scale afforestation efforts in China have failed to solve the desertification problem", Environ Sci Technol, 42: 1826~1831. https://doi.org/10.1021/es0870597
  6. Chang, I., A. K. Prasidhi, J. Im and G. C. Cho (2015a), "Soil strengthening using thermo-gelation biopolymers", Constr Build Mater, 77: 430~438. https://doi.org/10.1016/j.conbuildmat.2014.12.116
  7. Chang, I., A. K. Prasidhi, J. Im, H. D. Shin and G. C. Cho (2015b), "Soil treatment using microbial bio-polymers for anti-desertification purposes", Geoderma, 253~254: 39~47. https://doi.org/10.1016/j.geoderma.2015.04.006
  8. Chang, I., J. Im, A. K. Prasidhi and G. C. Cho (2015c), "Effects of xanthan gum biopolymer on soil strengthening", Constr Build Mater, 74: 65~72. https://doi.org/10.1016/j.conbuildmat.2014.10.026
  9. Chang, I., J. Im, G. C. Cho (2016a), "Introduction of microbial biopolymers in soil treatment for future environmentally-friendly and sustainable geotechnical engineering", Sustainability, 8: 251. https://doi.org/10.3390/su8030251
  10. Chang, I., J. Im and G. C. Cho (2016b), "Geotechnical engineering behaviors of gellan gum biopolymer treated sand", Can Geotech J, 53: 1658~1670. https://doi.org/10.1139/cgj-2015-0475
  11. Chang, I., J. Im, S. W. Lee and G. C. Cho (2017), "Strength durability of gellan gum biopolymertreated Korean sand with cyclic wetting and drying", Constr Build Mater, 143: 210~221. https://doi.org/10.1016/j.conbuildmat.2017.02.061
  12. Chang, I., M. H. Lee and G. C. Cho (2019a), "Global CO2 emission-related geotechnical engineering hazards and the mission for sustainable geo-technical engineering", Energies, 12(13): 2567. https://doi.org/10.3390/en12132567
  13. Chang, I., Y. M. Kwon, J. Im and G. C. Cho (2019b), "Soil consistency and interparticle characteristics of xanthan gum biopolymer-containing soils with pore-fluid variation", Can Geotech J, 56: 1206~1213. https://doi.org/10.1139/cgj-2018-0254
  14. Chang, I. and G. C. Cho (2019c), "Shear strength behavior and parameters of microbial gellan gum-treated soils: from sand to clay", Acta Geotech, 14: 361~375. https://doi.org/10.1007/s11440-018-0641-x
  15. Chang, I., M. Lee, A. T. P. Tran, S. Lee, Y. M. Kwon, J. Im and G. C. Cho (2020), "Review on biopolymer-based soil treatment (BPST) technology in geo-technical engineering practices", Transportation Geotechnics, Elsevier, 24: 100385. https://doi.org/10.1016/j.trgeo.2020.100385
  16. Choi, S. G., I. Chang, M. Lee, J. H. Lee, J. T. Han and T. H. Kwon (2020), "Review on geotechnical engineering properties of sands treated by microbially induced calcium carbonate precipitation (MICP) and bio-polymers", Construction and Building Materials, 246: 118415. https://doi.org/10.1016/j.conbuildmat.2020.118415
  17. Crous, J. W. (2017), "Use of hydrogels in the planting of industrial wood plantations", Southern For J For Sci, 79: 197~213.
  18. Das, B. M. and K. Sobhan (2014), Principles of Geotechnical Engineering, Australia: Cengage Learning.
  19. DeJong, J. T., B. M. Mortensen, B. C. Martinez and D. C. Nelson (2010), "Bio-mediated soil improvement", Ecological Engineering, 36: 197~210. https://doi.org/10.1016/j.ecoleng.2008.12.029
  20. IPCC (2021), Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change, Cambridge University Press.
  21. Kavazanjian, E., E. Iglesias and I. Karatas (2009), "Biopolymer soil stabilization for wind erosion control", In the 17th International Conference on Soil Mechanics and Geotechnical Engineering, pp. 881~884.
  22. Kim, M., I. Song, M. Kim, S. Kim, Y. Kim, Y. Choi, M. Seo (2015), "Effect of polyacrylamide application on water and nutrient movements in soils", J Agric Chem Environ, 4: 76. https://doi.org/10.4236/jacen.2015.43008
  23. Larson, S., J. Ballard, C. Griggs, J. K. Newman and C. Nestler (2010), "An innovative non-ptroleum Rhizobium Tropici biopolymer salt for soil stabilization", In ASME 2010 International Mechanical Engineering Congress and Exposition, 5: 1279~1284.
  24. Lee, M., J. Im, I. Chang and G. C. Cho (2021), "Evaluation of injection capabilities of a biopolymer-based grout material", Geomechanics and Engineering, 25(1): 31~40. https://doi.org/10.12989/GAE.2021.25.1.031
  25. Lee, S., M. K. Chung, H. M. Park, K. I. Song and I. Chang (2019), "Xanthan gum biopolymer as soil-stabilization binder for road construction using local soil in Sri Lanka", Journal of Materials in Civil Engineering, 31(11): 060190120.
  26. Orts, W., R. Sojka and G. Glenn (2000), "Biopolymer additives to reduce erosion-induced soil losses during irrigation", Ind Crops Prod, 11: 19~29. https://doi.org/10.1016/S0926-6690(99)00030-8
  27. Peralta, J., M. A. Raouf, S. Tang and R. C. Williams (2012), "Bio-Renewable Asphalt Modifiers and Asphalt Substitutes", in Sustainable Bioenergy and Bioproducts, (ed) Gopalakrishnan, K., 89-115, London: Springer London.
  28. Sinha, R. K. (2004), Modern Plant Physiology, U.K.: Alpha Science International.
  29. Sonebi, M. (2006), "Rheological properties of grouts with viscosity modifying agents as diutan gum and welan gum incorporating pulverised fly ash", Cem Concr Res, 36: 1609~1618. https://doi.org/10.1016/j.cemconres.2006.05.016
  30. Stabnikov, V., V. Ivanov and J. Chu (2015), "Construction Biotechnology: a new area of biotechnological research and applications", World J Microbiol Biotechnol, 31: 1303~1314. https://doi.org/10.1007/s11274-015-1881-7
  31. S tarkey, T. E., S . A. Enebak, D. B. S outh and R. E. Cross (2012), "Particle size and composition of polymer root gels affect loblolly pine seedling survival", Native Plants J, 13: 19~26. https://doi.org/10.3368/npj.13.1.19
  32. Tongway, D. J., A. D. Sparrow and M. H. Friedel (2003), "Degradation and recovery processes in arid grazing lands of central Australia. Part 1: soil and land resources", J Arid Environ, 55: 301~326. https://doi.org/10.1016/S0140-1963(03)00025-9
  33. Tran, A. T. P., I. Chang and G. C. Cho (2019), "Soil water retention and vegetation growth improvement using microbial biopolymers for anti-desertification practices", Geomechanics and Engineering, 17(5): 475~483. https://doi.org/10.12989/GAE.2019.17.5.475
  34. Vanapalli, S. K., D. G. Fredlund, D. E. Pufahl and A. W. Clifton (1996), "Model for the prediction of shear strength with respect to soil suction", Can Geotech J, 33: 379~392. https://doi.org/10.1139/t96-060
  35. Venkatasubramanian, C. and G. Dhinakaran (2011), "Effect of bio-enzymatic soil stabilisation on unconfined compressive strength and California bearing ratio", J Eng Appl Sci, 6: 295~298.
  36. Watts, C. W., T. J. Tolhurst, K. S . Black and A. P. Whitmore (2003), "In situ measurements of erosion shear stress and geotechnical shear strength of the intertidal sediments of the experimental managed realignment scheme at Tollesbury, Essex, UK", Estuar Coast Shelf Sci, 58: 611~620. https://doi.org/10.1016/S0272-7714(03)00139-2
  37. United States Geological Survey (USGS) (2019), "Cement statistics and information", Accessed June 7, 2019. https://www.usgs.gov/centers/nmic/cement-statistics-and-information.