References
- 권철민(2020), 「파이썬 머신러닝 완벽 가이드」, 파주: 위키북스.
- Agassi, M. and M. Ben-Hur (1992), "S tabilizing steep slopes with soil conditioners and plants", Soil Technology, 5: 249~256. https://doi.org/10.1016/0933-3630(92)90025-V
- Bouazza, A., W. Gates and P. Ranjith (2009), "Hydraulic conductivity of biopolymer-treated silty sand", Geotechnique, 59: 71~72. https://doi.org/10.1680/geot.2007.00137
- Bouwer, L. M. (2011), "Have disaster losses increased due to anthropogenic climate change?", Bull. Am. Meteorol. Soc., 92: 39~46. https://doi.org/10.1175/2010BAMS3092.1
- Cao, S. (2008), "Why large-scale afforestation efforts in China have failed to solve the desertification problem", Environ Sci Technol, 42: 1826~1831. https://doi.org/10.1021/es0870597
- Chang, I., A. K. Prasidhi, J. Im and G. C. Cho (2015a), "Soil strengthening using thermo-gelation biopolymers", Constr Build Mater, 77: 430~438. https://doi.org/10.1016/j.conbuildmat.2014.12.116
- Chang, I., A. K. Prasidhi, J. Im, H. D. Shin and G. C. Cho (2015b), "Soil treatment using microbial bio-polymers for anti-desertification purposes", Geoderma, 253~254: 39~47. https://doi.org/10.1016/j.geoderma.2015.04.006
- Chang, I., J. Im, A. K. Prasidhi and G. C. Cho (2015c), "Effects of xanthan gum biopolymer on soil strengthening", Constr Build Mater, 74: 65~72. https://doi.org/10.1016/j.conbuildmat.2014.10.026
- Chang, I., J. Im, G. C. Cho (2016a), "Introduction of microbial biopolymers in soil treatment for future environmentally-friendly and sustainable geotechnical engineering", Sustainability, 8: 251. https://doi.org/10.3390/su8030251
- Chang, I., J. Im and G. C. Cho (2016b), "Geotechnical engineering behaviors of gellan gum biopolymer treated sand", Can Geotech J, 53: 1658~1670. https://doi.org/10.1139/cgj-2015-0475
- Chang, I., J. Im, S. W. Lee and G. C. Cho (2017), "Strength durability of gellan gum biopolymertreated Korean sand with cyclic wetting and drying", Constr Build Mater, 143: 210~221. https://doi.org/10.1016/j.conbuildmat.2017.02.061
- Chang, I., M. H. Lee and G. C. Cho (2019a), "Global CO2 emission-related geotechnical engineering hazards and the mission for sustainable geo-technical engineering", Energies, 12(13): 2567. https://doi.org/10.3390/en12132567
- Chang, I., Y. M. Kwon, J. Im and G. C. Cho (2019b), "Soil consistency and interparticle characteristics of xanthan gum biopolymer-containing soils with pore-fluid variation", Can Geotech J, 56: 1206~1213. https://doi.org/10.1139/cgj-2018-0254
- Chang, I. and G. C. Cho (2019c), "Shear strength behavior and parameters of microbial gellan gum-treated soils: from sand to clay", Acta Geotech, 14: 361~375. https://doi.org/10.1007/s11440-018-0641-x
- Chang, I., M. Lee, A. T. P. Tran, S. Lee, Y. M. Kwon, J. Im and G. C. Cho (2020), "Review on biopolymer-based soil treatment (BPST) technology in geo-technical engineering practices", Transportation Geotechnics, Elsevier, 24: 100385. https://doi.org/10.1016/j.trgeo.2020.100385
- Choi, S. G., I. Chang, M. Lee, J. H. Lee, J. T. Han and T. H. Kwon (2020), "Review on geotechnical engineering properties of sands treated by microbially induced calcium carbonate precipitation (MICP) and bio-polymers", Construction and Building Materials, 246: 118415. https://doi.org/10.1016/j.conbuildmat.2020.118415
- Crous, J. W. (2017), "Use of hydrogels in the planting of industrial wood plantations", Southern For J For Sci, 79: 197~213.
- Das, B. M. and K. Sobhan (2014), Principles of Geotechnical Engineering, Australia: Cengage Learning.
- DeJong, J. T., B. M. Mortensen, B. C. Martinez and D. C. Nelson (2010), "Bio-mediated soil improvement", Ecological Engineering, 36: 197~210. https://doi.org/10.1016/j.ecoleng.2008.12.029
- IPCC (2021), Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change, Cambridge University Press.
- Kavazanjian, E., E. Iglesias and I. Karatas (2009), "Biopolymer soil stabilization for wind erosion control", In the 17th International Conference on Soil Mechanics and Geotechnical Engineering, pp. 881~884.
- Kim, M., I. Song, M. Kim, S. Kim, Y. Kim, Y. Choi, M. Seo (2015), "Effect of polyacrylamide application on water and nutrient movements in soils", J Agric Chem Environ, 4: 76. https://doi.org/10.4236/jacen.2015.43008
- Larson, S., J. Ballard, C. Griggs, J. K. Newman and C. Nestler (2010), "An innovative non-ptroleum Rhizobium Tropici biopolymer salt for soil stabilization", In ASME 2010 International Mechanical Engineering Congress and Exposition, 5: 1279~1284.
- Lee, M., J. Im, I. Chang and G. C. Cho (2021), "Evaluation of injection capabilities of a biopolymer-based grout material", Geomechanics and Engineering, 25(1): 31~40. https://doi.org/10.12989/GAE.2021.25.1.031
- Lee, S., M. K. Chung, H. M. Park, K. I. Song and I. Chang (2019), "Xanthan gum biopolymer as soil-stabilization binder for road construction using local soil in Sri Lanka", Journal of Materials in Civil Engineering, 31(11): 060190120.
- Orts, W., R. Sojka and G. Glenn (2000), "Biopolymer additives to reduce erosion-induced soil losses during irrigation", Ind Crops Prod, 11: 19~29. https://doi.org/10.1016/S0926-6690(99)00030-8
- Peralta, J., M. A. Raouf, S. Tang and R. C. Williams (2012), "Bio-Renewable Asphalt Modifiers and Asphalt Substitutes", in Sustainable Bioenergy and Bioproducts, (ed) Gopalakrishnan, K., 89-115, London: Springer London.
- Sinha, R. K. (2004), Modern Plant Physiology, U.K.: Alpha Science International.
- Sonebi, M. (2006), "Rheological properties of grouts with viscosity modifying agents as diutan gum and welan gum incorporating pulverised fly ash", Cem Concr Res, 36: 1609~1618. https://doi.org/10.1016/j.cemconres.2006.05.016
- Stabnikov, V., V. Ivanov and J. Chu (2015), "Construction Biotechnology: a new area of biotechnological research and applications", World J Microbiol Biotechnol, 31: 1303~1314. https://doi.org/10.1007/s11274-015-1881-7
- S tarkey, T. E., S . A. Enebak, D. B. S outh and R. E. Cross (2012), "Particle size and composition of polymer root gels affect loblolly pine seedling survival", Native Plants J, 13: 19~26. https://doi.org/10.3368/npj.13.1.19
- Tongway, D. J., A. D. Sparrow and M. H. Friedel (2003), "Degradation and recovery processes in arid grazing lands of central Australia. Part 1: soil and land resources", J Arid Environ, 55: 301~326. https://doi.org/10.1016/S0140-1963(03)00025-9
- Tran, A. T. P., I. Chang and G. C. Cho (2019), "Soil water retention and vegetation growth improvement using microbial biopolymers for anti-desertification practices", Geomechanics and Engineering, 17(5): 475~483. https://doi.org/10.12989/GAE.2019.17.5.475
- Vanapalli, S. K., D. G. Fredlund, D. E. Pufahl and A. W. Clifton (1996), "Model for the prediction of shear strength with respect to soil suction", Can Geotech J, 33: 379~392. https://doi.org/10.1139/t96-060
- Venkatasubramanian, C. and G. Dhinakaran (2011), "Effect of bio-enzymatic soil stabilisation on unconfined compressive strength and California bearing ratio", J Eng Appl Sci, 6: 295~298.
- Watts, C. W., T. J. Tolhurst, K. S . Black and A. P. Whitmore (2003), "In situ measurements of erosion shear stress and geotechnical shear strength of the intertidal sediments of the experimental managed realignment scheme at Tollesbury, Essex, UK", Estuar Coast Shelf Sci, 58: 611~620. https://doi.org/10.1016/S0272-7714(03)00139-2
- United States Geological Survey (USGS) (2019), "Cement statistics and information", Accessed June 7, 2019. https://www.usgs.gov/centers/nmic/cement-statistics-and-information.