• Title/Summary/Keyword: Uranyl Complexes

Search Result 15, Processing Time 0.023 seconds

Spectral and Thermal Properties of Some Uranyl Complexes of Some Schiff-Bases Derived from Glycylglycine

  • Sh. A. Sallam;M. I. Ayad
    • Journal of the Korean Chemical Society
    • /
    • v.47 no.3
    • /
    • pp.199-205
    • /
    • 2003
  • Complexes of uranyl ion $UO^{+2}_2$with Schiff-bases obtained by condensing glycylglycine with salicylaldehyde; 2-hydroxy-1-naphthaldehyde, 2,3-dihydroxybenzaldehyde, and 2,4-dihydroxybenzaldehyde have been synthesized and characterized through elemental analysis, conductivity measurements, magnetic susceptibility determinations, u.v., i.r. and $^1H$ nmr spectra as well as d.t.a., t.g. and d.s.c. techniques. Structures and mechanisms of thermal decomposition are proposed.

Thermal Decomposition Reaction of Gas-phase Uranyl Complexes as Studied by in-Situ IR Spectroscopy

  • Cho, Young-Hwan;Choi, In-Kyu;Kim, Won-Ho
    • Proceedings of the Korean Nuclear Society Conference
    • /
    • 2002.05a
    • /
    • pp.420.1-420
    • /
    • 2002
  • Thermal decomposition reaction of gas-phase UO2(hfacac)2. THF was investigated in a static cell. IR spectroscopic method was used to study the thermal decomptsition of gas phase uranyl complexes. The decomposition reaction products were separated by using thermal-gradient fractional sublimation method utilizing the differences in their volatility.

  • PDF

Effective Uranyl Binding by a Dihydroxyazobenzene Derivative. Ionization of Uranium-Bound Water

  • 이관표;장보빈;서정훈
    • Bulletin of the Korean Chemical Society
    • /
    • v.17 no.9
    • /
    • pp.814-819
    • /
    • 1996
  • In search of simple host molecules for uranyl ion which form 1: 1-type complexes with high formation constants that can be used either in extraction of uranium from seawater or in catalysis of biologically important organic reactions, the uranophile activities of dihydroxyazobenzene derivative 1 were studied. Uranyl ion and 1 form a 1: 1-type complex with a very large formation constant. The formation constant was measured at pH 7-11.6 by competition experiments with carbonate ion. From the resulting pH dependence, ionization constants of the two aquo ligands coordinated to the uranium of the uranyl complex of 1 were calculated. The ionization constants were also measured by potentiometric titration of the uranyl complex of 1. Based on these results, the pKa values of the two aquo ligands were estimated as 7.1 and 11.0, respectively. At pH 7.5-9.5, therefore, the complex exists mostly as monohydroxo species. Under the conditions of seawater, 1 possesses greater affinity toward uranyl ion compared with other uranophiles such as carbonate ion, calixarene derivatives, or a macrocyclic octacarboxylate. In addition, complexation of 1 with uranyl ion is much faster than that of the calixarene or octacarboxylate uranophiles.

Metal Sequestering by a Poly(ethylenimine)-Sephadex G-25 Conjugate Containing 2,2'-Dihydroxyazobenzene

  • Gwan, Won Jong;Yu, Chang Eun;Jang, Won Seok;No, Yeong Seok;Seo, Jeong Hun
    • Bulletin of the Korean Chemical Society
    • /
    • v.21 no.4
    • /
    • pp.393-400
    • /
    • 2000
  • 2,2¢-Dihydroxyazobenzene (DHAB) was attached to poly(ethylenimine) (PEI) to obtain DHAB-PEI. Spectral titration revealed that uranyl, Fe(III), Cu(II), and Zn(II) ion form 1 : 1-type complexes with DHAB attached to PEI. Formation constants for the metal complexes formed by the DHAB moieties of DHAB-PEI were mea-sured by using various competing ligands. The results indicated thatthe concentrations of uranyl, Fe(III), and Cu(II) ions can be reduced to 10 -16 -10 -23 M at p 8 with DHAB-PEI when the concentration of the DHAB moiety is 1 residue M. By using cyanuric chloride as the coupling reagent, DHAB-PEI was immobilized on Sephadex G-25 resin to obtain DHAB-PEI-Seph. Binding of uranyl,Fe(III), Cu(II), and Zn(II) ion by DHAB-PEI-Seph was characterized by using competing ligands. A new method has been developed for characteriza-tion of metal sequestering ability of a chelating resin. Formation constants and metal-binding capacity of two sets of binding sites on the resin were estimated for each metal ion. DHAB-PI-Seph was applied to recovery of metals such as uranium,Fe, Cu, Zn, Pb, V, Mn, and W from seawater. The uranium recovery from seawaterby DHAB-PEI-Seph does not meet the criterion for economical feasibility partlydue to interference by Fe and Zn ions. The seawater used in the experiment was contaminated by Fe and Zn and, therefore, the efficiency of uranium extractionfrom seawater with DHAB-PEI-Seph could be improved if the experiment is carried out in a cleaner sea.

Ultrasonic-assisted dissolution of U3O8 in carbonate medium

  • Chenxi Hou;Mingjian He ;Haofan Fang;Meng Zhang;Yang Gao;Caishan Jiao;Hui He
    • Nuclear Engineering and Technology
    • /
    • v.55 no.1
    • /
    • pp.63-70
    • /
    • 2023
  • Ultrasound-assisted dissolution of U3O8 powder in carbonate solution was explored to determine if and how ultrasound act during the dissolution. The variation of U3O8 solid particles and uranyl complexes under ultrasound treatment and magnetic stirring was observed in carbonate media. The results show that the use of ultrasound can increase the solubility and dissolution rate of U3O8 powder than that under magnetic stirring. The crush of U3O8 particles and the reduction of the activation energy (Ea, kJ/mol) of U3O8 dissolution reaction were observed, which both play an important role in the ultrasonic-assisted dissolution of U3O8 in carbonate-peroxide solution. Meanwhile, there is no observation of the ultrasound effect on the distribution of uranyl species and hydrolysis of uranyl complexes during the ultrasound treatment in carbonate-peroxide solution. Although the generation of ·OH radicals under ultrasound (22 ± 2 kHz) was observed, the oxidation of ·OH had little effect on the dissolution of U3O8 in the carbonate-peroxide solution system.

Solvent Extraction of Uranium with Acetylacetone and Tri-n-Butyl Phosphate in n-Dodecane (아세틸아세톤과 트리부틸인산의 도데칸용액에 의한 우라늄의 용매추출)

  • Kyu Sun Bai;Key Suck Jung
    • Journal of the Korean Chemical Society
    • /
    • v.24 no.3
    • /
    • pp.245-249
    • /
    • 1980
  • Uranium (Ⅵ) was extracted from dilute aqueous solutions of uranyl nitrate with acetylacetone and tri-n-butyl phosphate in n-dodecane. Synergistic effect was observed with the mixed reagents above pH 1. The species extracted are the 1:2:1 and the 1:2:2 uranyl-AA-TBP complexes. The extraction constants for these reactions have been determined.

  • PDF

Aqueous U(VI) removal by green rust and vivianite at phosphate-rich environment

  • Sihn, Youngho;Yoon, In-Ho
    • Membrane and Water Treatment
    • /
    • v.11 no.3
    • /
    • pp.207-215
    • /
    • 2020
  • Vivianite (Fe32+(PO4)2·8H2O) and green rust ([Fe42+Fe23+(OH)-12][SO42-·2H2O]2-), ferrous containing minerals, could remove aqueous U(VI) in 5 min. and the efficiencies of green rust were roughly 2 times higher than that of vivianite. The zeta potential measurement results implies that the better performance of green rust might be attributed to the favorable surface charge toward uranyl phosphate species. The removal behaviors of the minerals were well fitted by pseudo-second order kinetic model (R2 > 0.990) indicating the dominant removal process was chemical adsorption. Effects of Ca2+ and CO32- at pH 7 were examined in terms of removal kinetic and capacity. The kinetic constants of aqueous U(VI) were 8 and 13 times lower (0.492 × 10-3 g/(mg·min); 0.305 × 10-3 g/(mg·min)) compared to the value in the absence of the ions. The thermodynamic equilibrium calculation showed that the stable uranyl species (uranyl tri-carbonate) were newly formed at the condition. Surface investigation on the reacted mineral with uranyl phosphates species were carried out by XPS. Ferrous iron and U(VI) on the green rust surface were completely oxidized and reduced into Fe(III) and U(IV) after 7 d. It suggests that the ferrous minerals can retard U(VI) migration in phosphate-rich groundwater through the adsorption and subsequent reduction processes.

Adsorption Properties of Uranium on Acrylic Fibers Treated with Hydroxylamine (하이드록실 아민으로 처리한 아크릴 섬유의 우라늄 흡착특성)

  • Chin Young Gil;Lee Jung Sook
    • Journal of the Korean Society of Clothing and Textiles
    • /
    • v.14 no.2
    • /
    • pp.98-103
    • /
    • 1990
  • Fibrous adsorbents containing amidoxime group which make chelate complexes with uranyl ions are studied for the recovery of uranium from sea water. Acrylic fibers are used as base Polymer. The adsorption properties of uranium are carried out to examine pH effect, concen-tration dependence, adsorption rate, separation, and chelate complex. The results obtained are as follows; 1. Metal capacity of U (VI) ion is in the range of pH $2\~10.2$. Amidoxime group-containing fiber recover U (VI) ions existed in sea water or waste water in extremely small quantities. 3. Using amidoxime group-containing fiber Cu (II) and U (VI) are separated with each other in dilute nitric acid solution (pH 2.3). 4. U (VI) chelate complexes are conformed by tridendate ligands, which are coordinated with one nitrogen and two oxygens onto amidoxime group-containing fiber.

  • PDF