• Title/Summary/Keyword: Upper bound method

Search Result 344, Processing Time 0.032 seconds

Discrete-Time Robust Guaranteed Cost Filtering for Convex Bounded Uncertain Systems With Time Delay

  • Kim, Jong-Hae
    • Transactions on Control, Automation and Systems Engineering
    • /
    • v.4 no.4
    • /
    • pp.324-329
    • /
    • 2002
  • In this paper, the guaranteed cost filtering design method for linear time delay systems with convex bounded uncertainties in discrete-time case is presented. The uncertain parameters are assumed to be unknown but belonging to known convex compact set of polytotype less conservative than norm bounded parameter uncertainty. The main purpose is to design a stable filter which minimizes the guaranteed cost. The sufficient condition for the existence of filter, the guaranteed cost filter design method, and the upper bound of the guaranteed cost are proposed. Since the proposed sufficient conditions are LMI(linear matrix inequality) forms in terms of all finding variables, all solutions can be obtained simultaneously by means of powerful convex programming tools with global convergence assured. Finally, a numerical example is given to check the validity of the proposed method.

UBET Analysis of the Combined Extrusion Using Shape Function

  • Bae, Won-Byong;Kim, Young-Ho-;Kim, Jae-Cheol-
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1994.10a
    • /
    • pp.205-209
    • /
    • 1994
  • The main purpose of this study is constructing new velocity fields on the base of shape function used in finite element method and showing the possibility of application it to metal forming processes. Utilizing the 8-node quadratic rectangular element, we expressed the velocity within the deformation region by interpolating the velocity of each nodal points. And the upper-bound formulation from this velocity fields was derived. In order to confirm the validity of this method we applied it to axisymmetic combined extrusion problem. the results of load show that this method is on better agreement with experiment than the conventional UBET, and also the flow pattern and profile of extruded part are reasonable.

  • PDF

On Guaranteed Cost Control of Uncertain Neutral Systems (섭동을 갖는 뉴트럴 시스템의 성능보장 안정화에 관하여)

  • Park, Ju-Hyun
    • The Transactions of the Korean Institute of Electrical Engineers D
    • /
    • v.52 no.3
    • /
    • pp.129-133
    • /
    • 2003
  • In this paper, we consider the robust guaranteed cost control problem for a class of uncertain neutral systems with given quadratic cost functions. The uncertainty is assumed to be norm-bounded and time-varying. The goal in this study is to design the memoryless state feedback controller such that the closed-loop system is asymptotically stable and the closed-loop cost function value is not more than a specified upper bound lot all admissible uncertainty. Some criteria for the existence of such controllers are derived based on the matrix inequality approach combined with the Lyapunov second method. A parameterized characterization of the robust guaranteed cost controllers is given in terms of the feasible solutions to the certain matrix inequalities. A numerical example is given to illustrate the proposed method.

Frequency analysis of eccentric hemispherical shells with variable thickness

  • Kang, Jae-Hoon
    • Structural Engineering and Mechanics
    • /
    • v.55 no.2
    • /
    • pp.245-261
    • /
    • 2015
  • A three-dimensional (3-D) method of analysis is presented for determining the free vibration frequencies of eccentric hemi-spherical shells of revolution with variable thickness. Unlike conventional shell theories, which are mathematically two-dimensional (2-D), the present method is based upon the 3-D dynamic equations of elasticity. Displacement components $u_r$, $u_{\Theta}$, and $u_z$ in the radial, circumferential, and axial directions, respectively, are taken to be periodic in ${\theta}$ and in time, and algebraic polynomials in the r and z directions. Potential and kinetic energies of eccentric hemi-spherical shells with variable thickness are formulated, and the Ritz method is used to solve the eigenvalue problem, thus yielding upper bound values of the frequencies by minimizing the frequencies. As the degree of the polynomials is increased, frequencies converge to the exact values. Convergence to three or four-digit exactitude is demonstrated for the first five frequencies of the shells. Numerical results are presented for a variety of eccentric hemi-spherical shells with variable thickness.

A novel design method for the velocity controller of DC servo motor (새로운 DC 서어보 모우터 속도제어기 설계에 관한 연구)

  • 장태규;변증남
    • 전기의세계
    • /
    • v.30 no.8
    • /
    • pp.501-508
    • /
    • 1981
  • A novel and simple method of designing the current feedback loop for the velocity controller of an armature controlled dc servo motor is presented. Instead of constructing the usual tight current feedback loop, a loose current feedback loop is suggested in this paper. More specifically, the armature current is not limited to a fixed constant value, but instead the upper bound value is allowed to be variable along with the present motor speed. The control system designed in this manner shows that the motor under control is robust to a wide range of loading conditions and yields a more rapid transient characteristics which is verified experimentally by applying the method in the design of the controller for an Industrial robot.

  • PDF

Face stability analysis of large-diameter underwater shield tunnel in soft-hard uneven strata under fluid-solid coupling

  • Shanglong Zhang;Xuansheng Cheng;Xinhai Zhou;Yue Sun
    • Geomechanics and Engineering
    • /
    • v.32 no.2
    • /
    • pp.145-157
    • /
    • 2023
  • This paper aims at investigating the face stability of large-diameter underwater shield tunnels considering seepage in soft-hard uneven strata. Using the kinematic approach of limit upper-bound analysis, the analytical solution of limit supporting pressure on the tunnel face considering seepage was obtained based on a logarithmic spiral collapsed body in uneven strata. The stability analysis method of the excavation face with different soft- and hard-stratum ratios was explored and validated. Moreover, the effects of water level and burial depth on tunnel face stability were discussed. The results show the effect of seepage on the excavation face stability can be accounted as the seepage force on the excavation face and the seepage force of pore water in instability body. When the thickness ratio of hard soil layer within the excavation face exceeds 1/6D, the interface of the soft and hard soil layer can be placed at tunnel axis during stability analysis. The reliability of the analytical solution of the limit supporting pressure is validated by numerical method and literature methods. The increase of water level causes the instability of upper soft soil layer firstly due to the higher seepage force. With the rise of burial depth, the horizontal displacement of the upper soft soil decreases and the limit supporting pressure changes little because of soil arching effect.

Evaluation of Soil Stiffness Variability Effects on Soil-Structure Interaction Response of Nuclear Power Plant Structure (지반강성의 변동성이 원전구조물의 지반-구조물 상호작용 응답에 미치는 영향 분석)

  • Kim, Jae Min;Noh, Tae Yong;Huh, Jungwon;Kim, Moon Soo;Hyun, Chang Hun
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.19 no.2
    • /
    • pp.63-74
    • /
    • 2015
  • This study investigated the influence of probabilistic variability in stiffness and nonlinearity of soil on response of nuclear power plant (NPP) structure subjected to seismic loads considering the soil-structure interaction (SSI). Both deterministic and probabilistic methods have been employed to evaluate the dynamic responses of the structure. For the deterministic method, $SRP_{min}$ method given in USNRC SRP 3.7.2(2013) (envelope of responses using three shear modulus profiles of lower bound($G_{LB}$), best estimate($G_{BE}$) and upper bound($G_{UB}$)) and $SRP_{max}$ method (envelope of responses by more than three ground profiles within range of $G_{LB}{\leq}G{\leq}G_{UB}$) have been considered. The probabilistic method uses the Latin Hypercube Sampling (LHS) that can capture probabilistic feature of soil stiffness defined by the median and the standard deviation. These analysis results indicated that 1) number of samples shall be larger than 60 to apply the probabilistic approach in SSI analysis and 2) in-structure response spectra using equivalent linear soil profiles considering the nonlinear behavior of soil medium can be larger than those based on low-strain soil profiles.

Efficient High Quality Volume Visualization Using Cardinal Interpolation (카디널 보간을 이용한 효율적인 고화질 볼륨 가시화)

  • Kye, Hee-Won
    • Journal of Korea Multimedia Society
    • /
    • v.14 no.3
    • /
    • pp.339-347
    • /
    • 2011
  • As the volume visualization has been applied to render medical datasets, there has been a requirement to produce high quality images. Even though nice images can be generated by using previous linear filter, high order filter is required for better images. However, it takes much time for high order resampling, so that, overall rendering time is increased. In this paper, we perform high quality volume visualization using the cardinal interpolation. By enabling the empty space leaping which reduces the number of resampling, we achieve the efficient visualization. In detail, we divide the volume data into small blocks and leap empty blocks by referring the upper and lower bound value for each block. We propose a new method to estimate upper and lower bound value of for each block. As the result, we noticeably accelerated high quality volume visualization.

A Study on Particle Filter based on KLD-Resampling for Wireless Patient Tracking

  • Ly-Tu, Nga;Le-Tien, Thuong;Mai, Linh
    • Industrial Engineering and Management Systems
    • /
    • v.16 no.1
    • /
    • pp.92-102
    • /
    • 2017
  • In this paper, we consider a typical health care system via the help of Wireless Sensor Network (WSN) for wireless patient tracking. The wireless patient tracking module of this system performs localization out of samples of Received Signal Strength (RSS) variations and tracking through a Particle Filter (PF) for WSN assisted by multiple transmit-power information. We propose a modified PF, Kullback-Leibler Distance (KLD)-resampling PF, to ameliorate the effect of RSS variations by generating a sample set near the high-likelihood region for improving the wireless patient tracking. The key idea of this method is to approximate a discrete distribution with an upper bound error on the KLD for reducing both location error and the number of particles used. To determine this bound error, an optimal algorithm is proposed based on the maximum gap error between the proposal and Sampling Important Resampling (SIR) algorithms. By setting up these values, a number of simulations using the health care system's data sets which contains the real RSSI measurements to evaluate the location error in term of various power levels and density nodes for all methods. Finally, we point out the effect of different power levels vs. different density nodes for the wireless patient tracking.

Optimal design of Base Isolation System considering uncertain bounded system parameters

  • Roy, Bijan Kumar;Chakraborty, Subrata
    • Structural Engineering and Mechanics
    • /
    • v.46 no.1
    • /
    • pp.19-37
    • /
    • 2013
  • The optimum design of base isolation system considering model parameter uncertainty is usually performed by using the unconditional response of structure obtained by the total probability theory, as the performance index. Though, the probabilistic approach is powerful, it cannot be applied when the maximum possible ranges of variations are known and can be only modelled as uncertain but bounded type. In such cases, the interval analysis method is a viable alternative. The present study focuses on the bounded optimization of base isolation system to mitigate the seismic vibration effect of structures characterized by bounded type system parameters. With this intention in view, the conditional stochastic response quantities are obtained in random vibration framework using the state space formulation. Subsequently, with the aid of matrix perturbation theory using first order Taylor series expansion of dynamic response function and its interval extension, the vibration control problem is transformed to appropriate deterministic optimization problems correspond to a lower bound and upper bound optimum solutions. A lead rubber bearing isolating a multi-storeyed building frame is considered for numerical study to elucidate the proposed bounded optimization procedure and the optimum performance of the isolation system.