• Title/Summary/Keyword: UoF

Search Result 30, Processing Time 0.021 seconds

Radiation-induced thermal conductivity degradation modeling of zirconium

  • Sangil Choi;Hyunmyung Kim;Seunghwan Yu
    • Nuclear Engineering and Technology
    • /
    • v.56 no.4
    • /
    • pp.1277-1283
    • /
    • 2024
  • This study presents a radiation-induced thermal conductivity degradation (TCD) model of zirconium as compared to the conventional UO2 TCD model. We derived the governing factors of the radiation-induced TCD model, such as maximum TCD value and temperature range of TCD. The maximum TCD value was derived by two methods, in which 1) experimental result of 32 % TCD was directly utilized as the maximum TCD value and 2) a theoretical approach based on dislocation was applied to derive the maximum TCD value. Further, the temperature range of TCD was determined to be 437-837 K by 1) experimental results of post-annealing of irradiation hardening as compared to 2) the rate theory and thermal equilibrium. Consequently, the radiation-induced TCD model of zirconium was derived to be $f_r=1-{\frac{0.32}{1+{\exp}\,\{(T-637)/45\}}}$. Because the thermal conductivity of zirconium is one of the factors determining the storage and transport system, this newly proposed model could improve the safety analysis of spent fuel storage systems.

Reprocessing of fluorination ash surrogate in the CARBOFLUOREX process

  • Boyarintsev, Alexander V.;Stepanov, Sergei I.;Chekmarev, Alexander M.;Tsivadze, Aslan Yu.
    • Nuclear Engineering and Technology
    • /
    • v.52 no.1
    • /
    • pp.109-114
    • /
    • 2020
  • This work presents the results of laboratory scale tests of the CARBOFLUOREX (CARBOnate FLUORide EXtraction) process - a novel technology for the recovery of U and Pu from the solid fluorides residue (fluorination ash) of Fluoride Volatility Method (FVM) reprocessing of spent nuclear fuel (SNF). To study the oxidative leaching of U from the fluorination ash (FA) by Na2CO3 or Na2CO3-H2O2 solutions followed by solvent extraction by methyltrioctylammonium carbonate in toluene and purification of U from the fission products (FPs) impurities we used a surrogate of FA consisting of UF4 or UO2F2, and FPs fluorides with stable isotopes of Ce, Zr, Sr, Ba, Cs, Fe, Cr, Ni, La, Nd, Pr, Sm. Purification factors of U from impurities at the solvent extraction refining stage reached the values of 104-105, and up to 106 upon the completion of the processing cycle. Obtained results showed a high efficiency of the CARBOFLUOREX process for recovery and separating of U from FPs contained in FA, which allows completing of the FVM cycle with recovery of U and Pu from hardly processed FA.

Uranium tetrafluoride production at pilot scale using a mercury electrode cell

  • Dides, Munir;Hernandez, Jose;Olivares, Luis
    • Nuclear Engineering and Technology
    • /
    • v.54 no.5
    • /
    • pp.1909-1913
    • /
    • 2022
  • This work shows the technical feasibility to obtain uranium tetrafluoride through an electrochemical mercury cell. This technique represents a custom scaling-up methodology from our previous studies to obtain UF4 using the dropping mercury electrode cell. The UF4 products were obtained from natural UF6 gas, which was hydrolyzed to obtain a 50 g/L UO2F2 solution. The electrolysis cell was made using a mercury reservoir, to reach UF4 production rates of 1 Kg UF4/day. This custom design allowed a stable UF4 production thanks to the mercury cathode, which do not permit the accumulation of solid products in its surface. The cell was tested using current densities from 5.000 to 17.500 A/m2 and temperatures from 25 to 65 ℃. The maximum current efficiency achieved under these conditions was 80%. The UF4 powders possessed spherical morphology, with diameters between 20 and 80 ㎛. Compared to the SnCl2 precipitation, this process did not allow preferential growth of the precipitates. This improved the compaction of the UF4 - Mg powders mixtures, with densities between 3.0 and 3.5 g/cm3. The purity of the UF4 products was over 98%.

Biological Activities of Sesquiterpene Lactones isolated from Several Compositae Plants Part 1 - Cytotoxicity against Cancer Cell Lines - (수종의 국화과 식물에서 분리한 Sesquiterpene Lactone들의 생리활성(제1보) - 암세포주에 대한 세포독성 -)

  • Jang, Dae-Sik;Park, Ki-Hun;Kim, Hwan-Mook;Hong, Dong-Ho;Chun, Hyo-Kon;Kho, Yung-Hee;Yang, Min-Suk
    • Korean Journal of Pharmacognosy
    • /
    • v.29 no.3
    • /
    • pp.243-247
    • /
    • 1998
  • A diverse panel of human tumor cell lines and a mouse melanoma cell line (B16-F1) were used for the cytotoxicity test of the nine sesquiterpene lactones with ${\beta}-methylene-{\gamma}-lactone$ group isolated from Hemisteptia lyrata, Chrysanthemum zawadskii and Chrysanthemum boreale. In the cell adhesion inhibitory activity test against B16-F1 mouse melanoma cell, hemistepcin B, cumambrin B, costunolide and tulipinolide were shown significant activities with $IC_{50}$ range of 2.2, 4.1, 0.9 and $0.3\;{\mu}g/ml$, respectively. In the cytotoxicity test against human tumor cells, the most active compound was costunolide having $IC_{50}$ values of below $0.3\;{\mu}g/ml$ against all the tested cell lines except for UACC62. Cumambrin A, hendelin and costunolide exhibited more strong activity against HCT15 and UO-31 cell lines than a positive control, adriamycin. All tested compounds showed an $IC_{50}$ values of below $5.0\;{\mu}g/ml$ against all the tested cell lines.

  • PDF

Synthesis, Characterization and Antimicrobial Activities of Hydrazone Ligands Derived from 2-(phenylamino)acetohydrazide and Their Metal Complexes (2-(Phenylamino)acetohydrazide로부터 유도된 Hydrzone 리간드와 그들의 착물의 합성, 특성 및 항균활성)

  • EL-Saied, F.A.;Shakdofa, M.M.E.;Al-Hakimi, A.N.
    • Journal of the Korean Chemical Society
    • /
    • v.55 no.3
    • /
    • pp.444-453
    • /
    • 2011
  • VO(II), ZrO(II), Hf(IV), $UO_2$(II), Sn(II), V(V)$O_3$, Ru(III), Cd(II), Ho(III) and Yb(III) complexes of N'-(2-hydroxybenzyl)-2-(phenylamino)acetohydrazide ($H_2L^1$, 1) and N'-((3-hydroxy-naphthalen-2-yl)methylene)-2-(phenylamino)-acetohydrazide ($H_2L^2$, 13) have been synthesized and characterized by elemental analyses, $^1H$ NMR, IR, UV-Vis, conductance, thermal analyses (DTA and TG). The spectral data showed that the ligands behave as neutral bidentate, monobasic bidentate, monobasic tridentate or bibasic tridentate ligand bonded to the metal ions through the azomethine nitrogen atoms, phenolic hydroxyl group in protonated or deprotonated form and enolic or ketonic carbonyl group. The ligands and their metal complexes exhibit higher antifungal and antibacterial inhibitory effects than parent ligands and the solution of metal ions. Most of metal complexes exhibit higher antifungal activity than standard antifungal drug (amphotricene B). It is also clear that the ligands and their metal complexes have higher antifungal activity than antibacterial activity.

Study on Dissolution Condition of Monsanto Catalyst (몬산토 촉매의 용해방법에 관한 연구)

  • Choi, Kwang Soon;Lee, Chang Heon;Pyo, Hyung Yeol;Park, Yang Soon;Joe, Kih Soo;Kim, Won Ho
    • Analytical Science and Technology
    • /
    • v.14 no.4
    • /
    • pp.317-323
    • /
    • 2001
  • Dissolution procedures of Monsanto catalyst which has been used to produce acrylronitrile by ammoxidation of propylene have been studied. Optimum dissolution condition of the catalyst supported on silica was obtained by microwave digestion system with mixed of HCl, HF and $H_2O_2$. When a safety device was activated by increased pressure in microwave vessel, Bi, Fe, Mo, Sb and U were not volatilized even though silica was volatilized as $SiF_4$. Quantification results by this method were $SiO_2$ $50.5{\pm}0.4%$, $Sb_2O_3$ $29.6{\pm}0.6%$, $UO_2$ $10.2{\pm}0.1%$, $Fe_2O_3$ $6.1{\pm}0.1%$, $MoO_3$ $0.73{\pm}0.01%$ and $Bi_2O_3$ $0.49{\pm}0.01%$ by ICP-AES and the relative error was within ${\pm}10%$ except bismuth.

  • PDF

Metal Reduction and Mineral formation by fe(III)-Reducing Bacteria Isolated from Extreme Environments (철환원 박테리아에 의한 금속 환원 및 광물형성)

  • Yul Roh;Hi-Soo Moon;Yungoo Song
    • Journal of the Mineralogical Society of Korea
    • /
    • v.15 no.3
    • /
    • pp.231-240
    • /
    • 2002
  • Microbial metal reduction influences the biogeochemical cycles of carbon and metals as well as plays an important role in the bioremediation of metals, radionuclides, and organic contaminants. The use of bacteria to facilitate the production of magnetite nanoparticles and the formation of carbonate minerals may provide new biotechnological processes for material synthesis and carbon sequestration. Metal-reducing bacteria were isolated from a variety of extreme environments, such as deep terrestrial subsurface, deep marine sediments, water near Hydrothemal vents, and alkaline ponds. Metal-reducing bacteria isolated from diverse extreme environments were able to reduce Fe(III), Mn(IV), Cr(VI), Co(III), and U(VI) using short chain fatty acids and/or hydrogen as the electron donors. These bacteria exhibited diverse mineral precipitation capabilities including the formation of magnetite ($Fe_3$$O_4$), siderite ($FeCO_3$), calcite ($CaCO_3$), rhodochrosite ($MnCO_3$), vivianite [$Fe_3$($PO_4$)$_2$ .$8H_2$O], and uraninite ($UO_2$). Geochemical and environmental factors such as atmospheres, chemical milieu, and species of bacteria affected the extent of Fe(III)-reduction as well as the mineralogy and morphology of the crystalline iron mineral phases. Thermophilic bacteria use amorphous Fe(III)-oxyhydroxide plus metals (Co, Cr, Ni) as an electron acceptor and organic carbon as an electron donor to synthesize metal-substituted magnetite. Metal reducing bacteria were capable of $CO_2$conversion Into sparingly soluble carbonate minerals, such as siderite and calcite using amorphous Fe(III)-oxyhydroxide or metal-rich fly ash. These results indicate that microbial Fe(III)-reduction may not only play important roles in iron and carbon biogeochemistry in natural environments, but also be potentially useful f3r the synthesis of submicron-sized ferromagnetic materials.

Design Optimization of Duplex Burnable Poison Rods and Feasibility Evaluation for Core Design (이중구조 가연성독봉 설계안의 최적화 및 노심 핵설계 타당성 평가)

  • Yoon Seok-Kyun;Lee Dae-Jin;Kim Myung-Hyun
    • Journal of Energy Engineering
    • /
    • v.13 no.4
    • /
    • pp.242-258
    • /
    • 2004
  • The duplex burnable poison absorbers concept was suggested by Korea Atomic Energy Research Institute. This BP rod is composed of inner region of natural U-Gd$_2$O$_3$ and outer shell of enriched UO$_2$-Er$_2$O$_3$. It is expected that this burnable absorber has same reactivity control capability with gadolinia burnable absorber used in extened fuel cycle. In order to evaluate the nuclear feasibility of duplex BPs, the nuclear design characteristics were compared with that of four types of burnable absorbers; gadolinia, erbia, IFBA, dysprosia duplex BP on 24 months fuel cycle for Korean Standard Nuclear Power plants. According to the evaluation results of nuclear characteristics, the duplex BPs were better than other BPs on k-infinitives, reactivity holddown worth (RHW), pin power peaking and moderator temperature coefficient (MTC). The possibility of nuclear core design was also confirmed based on the optimized fuel assemblies which were searched for a sensitivity analysis. Characteristics of core design with duplex BPs was compared with that of reference core with gadolinia BPs for cycle length, power peaking and MTC. The duplex BP core had a little longer cycle length by 4 to 7 days because of increased amount of fissile in enriched uranium at the outer shell of duplex BP In case of power peaking F$\_$Q/ of duplex BP core was reduced from 1.5773 to 1.5335. MTC was also less -0.48 pcm/C than that of reference core. Finally, evaluation of fuel cycle economy was performed for the manufacturing feasibility test and fuel cost evaluation with duplex BPs. Fuel cycle economy of duplex BP core almost was equivalent with that of gadolinia BP core.

Lithologic and Structural Controls and Geochemistry of Uranium Deposition in the Ogcheon Black-Slate Formation (옥천대(沃川帶) 우라늄광층(鑛層)의 구조규제(構造規制) 및 지구화학적(地球化學的) 특성연구(特性硏究))

  • Lee, Dai Sung;Yun, Suckew;Lee, Jong Hyeog;Kim, Jeong Taeg
    • Economic and Environmental Geology
    • /
    • v.19 no.spc
    • /
    • pp.19-41
    • /
    • 1986
  • Structural, radioactive, petrological, petrochemical, mineralogical and stable isotopic study as well as the review of previous studies of the uranium-bearing slates in the Ogcheon sequence were carried out to examine the lithological and structural controls, and geochemical environment in the uranium deposition in the sequence. And the study was extended to the coal-bearing formation (Jangseong Series-Permian) to compare the geochemical and sedimentologic aspects of uranium chemistry between Ogcheon and Hambaegsan areas. The results obtained are as follows: 1. The uranium mineralization occurs in the carbonaceous black slates of the middle to lower Guryongsan formation and its equivalents in the Ogcheon sequence. In general, two or three uranium-bearing carbonaceous beds are found with about 1 to 1.5km stratigraphic interval and they extend from Chungju to Jinsan for 90km in distance, with intermittent igneous intrusions and structural Jisturbances. Average thickness of the beds ranges from 20 to 1,500m. 2. These carbonaceous slate beds were folded by a strong $F_1$-fold and were refolded by subsequent $F_1$-fold, nearly co-axial with the $F_1$, resulting in a repeated occurrence of similar slate. The carbonaceous beds were swelled in hing zones and were shrinked or thined out in limb by the these foldings. Minor faulting and brecciation of the carbonaceous beds were followed causing metamorphism of these beds and secondary migration and alteration of uranium minerals and their close associations. 3. Uranium-rich zones with high radioactive anomalies are found in Chungju, Deogpyong-Yongyuri, MiwonBoun, Daejeon-Geumsan areas in the range of 500~3,700 cps (corresponds to 0.017~0.087%U). These zones continue along strike of the beds for several tens to a few hundred meters but also discontinue with swelling and pinches at places that should be analogously developed toward underground in their vertical extentions. The drilling surveyings in those area, more than 120 holes, indicate that the depth-frequency to uranium rich bed ranging 40~160 meter is greater. 4. The features that higher radioactive anomalies occur particularly from the carbonaceous beds among the argillaceous lithologic units, are well demonstrated on the cross sections of the lithology and radioactive values of the major uranium deposits in the Ogcheon zone. However, one anomalous radioactive zone is found in a l:ornfels bed in Samgoe, near Daejeon city. This is interpreted as a thermal metamorphic effect by which original uranium contents in the underlying black slate were migrated into the hornfels bed. 5. Principal minerals of the uranium-bearing black slates are quartz, sericite, biotite and chlorite, and as to chemical composition of the black slates, $Al_2O_3$ contents appear to be much lower than the average values by its clarke suggesting that the Changri basin has rather proximal to its source area. 6. The uranium-bearing carbonaceous beds contain minor amounts of phosphorite minerals, pyrite, pyrrhotite and other sulfides but not contain iron oxides. Vanadium. Molybdenum, Barium, Nickel, Zirconium, Lead, Cromium and fixed Carbon, and some other heavy metals appear to be positive by correlative with uranium in their concentrations, suggesting a possibility of their genetic relationships. The estimated pH and Eh of the slate suggests an euxenic marine to organic-rich saline water environment during uranium was deposited in the middle part of Ogcheon zone. 7. The Carboniferous shale of Jangseong Series(Sadong Series) of Permian in Hambaegsan area having low radioactivity and in fluvial to beach deposits is entirely different in geochemical property and depositional environment from the middle part of Ogcheon zone, so-called "Pibanryong-Type Ogcheon Zone". 8. Synthesizing various data obtained by several aspects of research on uranium mineralization in the studied sequence, it is concluded that the processes of uranium deposition were incorporated with rich organic precipitation by which soluble uranyl ions, $U{_2}^{+{+}}$ were organochemically complexed and carried down to the pre-Ogcheon sea bottoms formed in transitional environment, from Red Sea type basin to Black Sea type basin. Decomposition of the organic matter under reducing conditions to hydrogen sulfide, which reduced the $UO{_2}^{+2}$ ions to the insoluble uranium dioxide($UO_2$), on the other side the heavy metals are precipitated as sulfides. 9. The EPMA study on the identification of uraninite and others and the genetic interpretation of uranium bearing slates by isotopic values of this work are given separately by Yun, S. in 1984.

  • PDF

Occurrence and chemistry of pyrochlore and baddeleyite in the Sokli carbonatite complex, Kola Peninsula, Arctic

  • Lee, Mi-Jung;C. Terry Williams;Lee, Jong-Ik;Kim, Yeadong
    • Proceedings of the Mineralogical Society of Korea Conference
    • /
    • 2003.05a
    • /
    • pp.67-67
    • /
    • 2003
  • The chemical compositions and textural relationships of the Nb-Zr oxide minerals including pyrochlore [ideally (Ca,Na)$_2$Nb$_2$O$\sub$6/(OH,F), with up to 24% UO$_2$ and 16% Ta$_2$O$\sub$5/] and baddeleyite [ideally ZrO$_2$, with up to 6% Nb$_2$O$\sub$5/] in the Sokli carbonatite complex, Kola Peninsula, Arctic are described. These two minerals in carbonatites are the major hosts for the HFSEs such as U, Th, Ta, Nb, Zr and Hf and thus are interest both economically and petrologically. The Sokli carbonatite complex (360-370 Ma) in Northern Finland, which forms a part of the Paleozoic Kola Alkaline Province (KAP), is mainly composed of multi-stages of carbonatite and phoscorite associations (P1-C1 P2-C2, P3-C3, D4 and D5) surrounded by altered ultramafic rocks (olivinite and pyroxenite) and cut by numerous small dikes of ultramafic lamprophyre. The Sokli complex contains the highest concentration in niobium and probably in tantalum, which are economically very important to modern steel technology, among the ultramafic-alkaline complexes of the KAP. Pyrochlore and baddeleyite mostly concentrate in the phoscorites. Pyrochlores in the Sokli complex are generally rounded octahedra and cubes in shape, red brown to grey yellow in color, and 0.2 to 5 mm in size. They are found in all calcite carbonatites, phoscorites and dolomite carbonatites, except P1-C1 rocks. These pyrochlores display remarkable zonations which depend on host rock compositions, and have significant compositional variations with evolution of the Sokli complex. The common variation scheme is that (1) early pyrochlore is highly enriched in U and Ta; (2) these elements decrease abruptly in the intermediate stage, while Th and Ce increase, and (3) late stage pyrochlore is low in U, Ta, Th, and Ce, and correspondingly high in Nb. Baddeleyites in the Sokli complex occur in the early P1-C1 and P2-C2 rocks and rarely in P3. They crystallized earlier than pyrochlores, and occasionally show post-magmatic corrosion and replacement. The FeO and TiO$_2$ contents of baddeleyites are much lower than those of the other terrestrial and lunar baddeleyites, whereas Nb$_2$O$\sub$5/ and Ta$_2$O$\sub$5/ contents are the highest among the reported compositions. Ta/Nb and Zr/Nb ratios of pyrochlores and baddeleyites decrease towards later stage facies, which is in accordance with the whole rock compositions. The variation of Ta/Nb and Zr/Nb ratios of pyrochlores and baddeleyites is considered to be a good indicator to trace an evolution of the carbonatite complexes.

  • PDF